
www.manaraa.com

TRANSPARENT CONSISTENCY IN CACHE AUGMENTED DATABASE

MANAGEMENT SYSTEMS

by

Jason Yap

A Dissertation Presented to the

FACULTY OF THE USC GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

May 2014

www.manaraa.com

Abstract

Cache Augmented Database Management Systems (CADBMSs) enhance theper-

formance of simple operations that exhibit a high read to write ratio, e.g., interactive

social networking actions. They are realized by extending a data store such as a Rela-

tional Database Management Systems (RDBMS) with a Key Value Store (KVS). At the

time of writing, memcached is a popular in-memory KVS in use by a number of Internet

service providers such as Facebook, YouTube, Wikipedia and others.

A key insight of CADBMSs is that query result lookup using the KVS is signif-

icantly faster than query processing using the RDBMS. A challenge is how tomain-

tain these query results consistent in the presence of updates to the RDBMS. Today’s

CADBMS solutions require a developer to design, implement, debug, and maintain

software to address this challenge. This dissertation presents novel design decisions to

realize physical data independence that hides the details of the storage structure (KVS

or RDBMS) from applications and their developers. These designs simplifythe com-

plexity of application software to expedite their development life cycle.

The proposed designs can be categorized into two groups. The first group prevents

race conditions that cause the KVS to produce stale data. Our primary contribution here

is the IQ framework and its simple programming model that employs Inhibit (I) and

Quarantine (Q) leases to provide strong consistency. We describe the compatibility of

the leases when the KVS is either invalidated or refreshed in the presence of updates to

the RDBMS.

The second group includes transparent techniques that invalidate the key-value pairs

of the KVS in the presence of updates to the RDBMS. Our primary contributionis

the SQL Query to Trigger translation (SQLTrig) technique. It provides theapplication

developers with the SQL query language and observes the performanceenhancements

of a KVS without requiring additional software. It intercepts the queries issued by an

application and authors software in the form of triggers that describes thetemplate of

the query. It registers these triggers with the RDBMS prior to inserting the query and

its result set as a key-value pair in the KVS. An insert, delete, update command to the

RDBMS invokes the trigger to compute the query (key) whose result set (value) has

changed. The trigger invalidates this key-value pair from the KVS in a transactional

manner.

We describe a software prototype that embodies both the SQLTrig techniqueand the

IQ framework. We use a social networking benchmark to compare this prototype with

a non-transparent consistency technique where the developer extends the application

1

www.manaraa.com

software to maintain key-value pairs consistent with the relational data. Obtained results

demonstrate that both provide comparable performance.

2

www.manaraa.com

Acknowledgements

I would like to extend my deepest gratitude to the many people who have helped and

supported me over the years in the road towards completing my Ph.D.

First and foremost, I would to thank my advisor, Shahram Ghandeharizadeh, for his

wisdom and guidance. I have learned a great deal throughout this whole process and I

thank him for sharing his time, experience, and advice so freely.

I would also like to thank the members of my guidance committee, Nenad Medvi-

dović, Leana Golubchik, William G. J. Halfond, and François Bar. Their feedback and

advice was greatly beneficial in improving my research. My time at the ComputerSci-

ence department of the University of Southern California has been a pleasure and has

provided me with a great environment that fostered my research and introduced me to

some very brilliant people.

I offer my gratitude to Oracle Inc. for supporting my research with an un-restricted

cash gift. Our collaboration produced many fruitful ideas and helped spur and shape

my research direction. I would particularly like to thank Dieter Gawlick for spearhead-

ing the effort as well as Srinivas Vemuri and Lakshminarayanan Chidambaran for their

technical insight into Oracle.

I am greatly appreciative of Sumita Barahmand from the Database Laboratory for

her help and friendship over the years. Always willing to help with everything from

practicing presentations to discussing ideas, her help was a great boon during my time

at the lab. I would also like to thank other past and present researchersof the Database

Lab, Nasser Alrayes, Reihane Boghrati, Litao Deng, Jorge Gonzalez,Connor Gorman,

Showvick Kalra, Lakshmy Mohanan, Neeraj Narang. All of whom havecollaborated

with me or helped me in many ways and made the lab a better place.

Last but certainly not least, I would like to thank my family. I would like to thank my

parents for their love and support and always encouraging me to pursue my ambitions.

My late brother, Jeffrey, will forever be missed. He was one of my greatest sources of

awe and inspiration while I was growing up and I am thankful that he encouraged me

to enter the field of computing in the first place. I would also like to extend my deepest

gratitude to my uncle and aunt, David and Veronica, for very graciously providing a

place to stay and treating me so well during my time here.

Thank you to all my friends, family, collaborators, colleagues and professors. I am

forever indebted to you for all the help I have received and know that this dissertation

would not have been possible were it not for all of you.

3

www.manaraa.com

Contents

Chapter 1 Introduction 10

1.1 Extending CADBMS Technology . 13

1.2 Reader’s Guide . 14

Chapter 2 Related Work 16

2.1 Consistency . 17

2.2 Materialized Views and Key-Value Pairs 19

Chapter 3 System Architectures 23

3.1 Client Server Architecture .. 23

3.2 Shared Address Space Architecture 29

Chapter 4 Consistency 30

4.1 Gumball . 30

4.1.1 Gumball Implementation . 32

4.2 IQ Leases . 34

4.2.1 Overview . 36

4.2.2 Invalidate . 40

4.2.3 Refresh . 44

4.2.4 An Implementation . 47

4.2.5 Evaluation . 51

Chapter 5 Cache Consistency Techniques 55

5.1 Non-transparent Consistency Techniques 56

5.1.1 Application Developer Consistency (ADC) 56

5.1.2 RDBMS Trigger (Trig) Driven . 56

5.1.3 Synthetic . 57

5.2 Transparent Consistency Techniques 58

5.3 Query Change Notification (QCN) . 58

4

www.manaraa.com

5.3.1 Query Registration And Notification 60

5.4 Dynamically Generated Triggers (SQLTrig) 61

5.4.1 Exact match selection predicates 63

5.4.2 Equi-join predicates with one or more exact-match selection predicates 65

5.4.3 Logical “or” Connectivity . 67

5.4.4 Simple Aggregates . 69

5.5 SQLTrig Implementation .70

5.5.1 SQLTrig Client . 71

5.5.2 SQLTrig Server . 74

5.6 Evaluation of QCN . 76

5.6.1 RAYS and a Social Networking Benchmark 76

5.6.2 Software development effort .79

5.6.3 Processing time and stale data .79

5.7 Evaluation of SQLTrig . 82

5.7.1 BG Social Networking Benchmark 83

5.7.2 Size of key-value pairs . 85

5.7.3 Social Action Rating . 85

Chapter 6 Correctness of SQLTrig 89

6.1 Properties . 89

6.2 Invariants . 90

Chapter 7 Future Research 93

7.1 Scalability of the Cache Layer .. 93

7.2 Data Availability . 97

7.2.1 Proposed Solutions . 99

7.3 IQ Framework Extensions . 101

7.4 Supporting Additional Query Types With SQLTrig 101

7.5 SQLTrig In Other Environments .. 102

5

www.manaraa.com

List of Figures

1.1 Throughput of 5 different systems with BG benchmark. 12

1.2 Throughput and % stale reads observed with Time-To-Live(TTL) based con-

sistency as a function of the TTL value. Application and Trigger based con-

sistency are also shown for comparison. 13

1.3 Decades of database technology. 14

3.1 Cache augmented RDBMS architecture.24

3.2 Conceptual Architecture as seen by the developer. 28

3.3 Physical Architecture as implemented by the SQLTrig framework. 28

3.4 Physical Architecture as implemented by the SQLTrig framework. 29

4.1 Two interleaved processing ofCSfuse andCSmod referencing the same key-

value pair. 31

4.2 Snapshot isolation enables Session 2 to compute and insert a stale value in

the KVS. 41

4.3 Deletion of key-value pairs after transaction commit point results in an in-

consistency window. 41

4.4 CADBMS results in dirty reads with refresh when an impactedkey-value

pair is updated prior to transaction commit. 44

4.5 Two logical operations race with one another to update the RDBMS correctly

only to result in a KVS state that violates the freshness property. 45

4.6 The RDBMS transaction of Session 2 is aborted, rolled back,and retried

because its QaC requests a Q lease that conflicts with the existing Q lease of

Session 1. 47

4.7 Expired leases cause refresh to produce stale data. 50

6

www.manaraa.com

5.1 A query instance to retrieve the friends of Member with userid=1 and its

corresponding query template. .61

5.2 Pseudo-code for processing join predicates. 66

5.3 Parse tree for a query containing an “or” predicate. 67

5.4 The components comprising the SQLTrig architecture. 71

5.5 Comparison of alternative approaches.ε=100 msec,θ=0, ω=1,000,u=1%,

n=10,000. 80

5.6 SQL-X database design with no images. Two records in the Friends table

represents the friendship between two members. The underlined attribute(s)

denote the primary key of a table. Attributes with a hat denote the indexed

attributes. 84

7.1 Distribution of the key space across 3 KVS nodes (C1, C2, andC3) in a

cluster. The master node keeps track of all KVS nodes. 94

7.2 Insert procedure. 95

7

www.manaraa.com

List of Tables

4.1 GT enabled delete, get, and put pseudo-code. All time stamps are local to

the server containingki − vi. 33

4.2 Two techniques to maintain the key-value pairs of the KVSconsistent with

updates to the tabular data in the RDBMS. 35

4.3 List of terms and their definitions. 36

4.4 Alternative actions and their implementation with memcached and a SQL

system. 37

4.5 Presence of KVS operations with invalidate and refresh.. 38

4.6 Pseudo-code of two interactive social networking actions implemented as

sessions with no leases. 38

4.7 Compatibility matrices of I/Q leases. 43

4.8 Two alternative implementations of the Invite Friend session of Figure 4.6.a

using QaC and SaR commands. 52

4.9 Number of rejected write leases (QaC calls) with two client implementations

of Section 4.2.4. 52

4.10 Percentage of unpredictable data using refresh/invalidate with Twemcache

by itself and Twemcache extended with the I/Q leases. 53

4.11 SoAR using refresh with Twemcache by itself and Twemcache extended with

the I/Q leases. 54

5.1 Marshalling of YCSB Workload C ResultSet with SQLTrig and Java. 74

5.2 Characteristics of two different sequences of page visits and clicks with

RAYS using an empty cache. 77

5.3 Workload of parameters and their definitions 77

8

www.manaraa.com

5.4 Processing time (Seconds) of Browse and Toggle Sequences. ε=100 msec,

θ=0,ω=1,000,u=1%,n=10,000. 81

5.5 Four mixes of social networking actions with BG. 82

5.6 Size of key-value pairs produced by different BG actions.. 84

5.7 Keys invalidated by SQLTrig’s authored triggers when processing a BG write

action. 86

5.8 SoAR, actions per second, of SQL-X by itself, extended with Twemcache

that is maintained consistent using developer provided software, and using

SQLTrig. Results are shown for two different social graphs consisting of

10,000 members and 100,000 members. Each social graph consists of 100

friends per member and 100 resources per member. 87

7.1 CacheServers table. 96

9

www.manaraa.com

Chapter 1

Introduction

In the era of no “one-size-fits-all”, organizations extend adatabase management system

(DBMS) with a key-value store (KVS) to enhance the velocity ofsimple operations that ei-

ther read or update a very small amount of big data. The resulting cache augmented database

management system, CADBMS [38], targets applications that perform simple operations

and exhibit a high read to write ratio. An example application is social networking with in-

teractive actions such as browse a profile, view a friend’s resource (say a picture) and post a

comment on it, generate a friend request and accept one, and others [12]. According to [14],

92% of user activities in social networking applications are read-only browse operations. A

popular in-memory KVS is memcached [55], in use by well knownInternet destinations such

as YouTube and Wikipedia. Its simple interface provides put, get, and delete of key-value

pairs computed using data in the DBMS.

A CADBMS deployment assumes query result look up is both fasterand more efficient1

than executing the query. A developer utilizes a CADBMS by identifying code segments in

an application that manipulate read intensive data, e.g., the code to compute the profile page

of a user. Execution of this code segment with an input, user-id, produces an output, the

HTML fragment pertaining to the user profile. This output is termed thevalueand identified

using a uniquekey. This key is typically constructed using the input to the code segment,

e.g., “Profile”+user-id. Next, the developer extends the code to look up the key prior to

executing the code segment with its input. If the KVS returnsthe value then the value is

used without executing the code segment. Otherwise, the code segment executes and the

resulting key-value pair is inserted in the KVS for use by future references. A code segment

1Performs less wasteful work [45] .

10

www.manaraa.com

may execute several queries and perform arbitrarily complex application logic. As longs as it

is deterministic, a key-value pair identifies a unique inputto this code segment and its unique

output.

To demonstrate performance enhancements obtained using CADBMS, Figure 1.1 shows

the throughput2 of several different systems with a social networking benchmark named

BG [12]. The workload consists of a mix of aforementioned social networking actions with

1% of actions updating the database. Target systems include:

1. SQL-X: A commercial3 relational database management system (RDBMS).

2. A Client-Server (CS) CADBMS consisting of SQL-X extended withmemcached [55]

server version 1.4.2 (64 bit). In the presence of updates to the RDBMS, two different

approaches to maintain the cached key-value pairs consistent were considered: Either

using application software or RDBMS triggers, see Section 5.1for details.

3. A Shared Address Space (SAS)4 CADBMS with application consistency: SQL-X ex-

tended with Ehcache [81] and application software to maintain key-value pairs consis-

tent.

4. MongoDB, a document store, representing a NoSQL solution.See [24] for a taxonomy

of NoSQL systems.

While SQL-X struggles to process 224 actions per second, onceextended with mem-

cached, it can process almost 6,000 actions per second. Ehcache enhances the performance

of SQL-X 70 folds to provide a throughput of more than 15,800 actions per second. Though

MongoDB outperforms SQL-X, its single node performance is lower than all CADBMSs.

One may incorporate the principles of a CADBMS in MongoDB (or any NoSQL solution)

to enhance its single node performance. This complements the ability of these systems to

scale out.

A challenge of using a CADBMS is how to maintain the key-value pairs consistent with

both incremental and bulk updates to the database. One may taxonomize today’s approaches

2All performance numbers reported here employ a BG social networking database consisting of 10,000
users with 100 friends per user and 100 resources per user. The number of threads used to generate the workload
is 100 and no service level agreements, i.e., no values for tolerable response time (β) and the percentage of
requests that must observe this response time (α). See [12] for details.

3Due to licensing restrictions, the identity of this commercial DBMS is not disclosed.
4Chapter 3 details the client-server and shared address space CADBMS architectures.

11

www.manaraa.com

Figure 1.1: Throughput of 5 different systems with BG benchmark.

into time to live and invalidation techniques. With the former, the developer extends the ap-

plication to provide a Time To Live, TTL, for each key-value pair inserted in KVS. The KVS

invalidates a key-value pair once its TTL expires, causing asubsequent reference for it to ob-

serve a miss, re-compute the value and insert it in the KVS. Figure 1.2 shows the throughput

and amount of stale data observed with a client-server CADBMS (SQL-X using memcached

with Whalin client) with different TTL values. Its experimental setting is identical to the

one shown in Figure 1.1 except for the use of TTL. The x-axis ofFigure 1.2 shows different

TTL values, ranging from 30 seconds to 5 minutes. As TTL increases, the throughput of the

CADBMS is enhanced due to a higher KVS hit rate. It also causes a larger percentage of

reads to observe stale data because the key-value pairs are stale and inconsistent with their

tabular representation in SQL-X. As a comparison, the figurealso shows the throughput and

the amount of stale data produced by the alternative techniques that invalidate data.

One may implement an invalidation based technique in eitherthe application or the

DBMS. With the former, the developer identifies code segmentsof the application that up-

date the database and extends them to either invalidate, refresh, or propagate the change to

the key-value pairs in the KVS. With the latter, the databaseadministrator authors triggers

(notification mechanisms) to update the KVS. These two techniques are implemented using

SQL-X and Figure 1.2 shows they provide throughput comparable to TTL of 5 minutes with

a significantly (several orders of magnitude) lower amount of stale data. The two techniques

provide comparable performance, see the two CS CADBMS bars in Figure 1.1. Applica-

12

www.manaraa.com

Figure 1.2: Throughput and % stale reads observed with Time-To-Live(TTL) based consis-
tency as a function of the TTL value. Application and Triggerbased consistency are also
shown for comparison.

tion and trigger consistency techniques produce some staledata because they suffer from

race conditions between writes to SQL-X and memcached. These race conditions are further

elaborated on in Chapter 4.

1.1 Extending CADBMS Technology

Today’s CADBMSs are in their infancy and resemble the data intensive applications of 1970s

that existed at the dawn of DBMSs, see Figure 1.3. They lackphysical data independence

that hides the details of the storage structure from user applications. In essence, when a

CADBMS employs a transactional DBMS, the application developer authors software to

maintain the normalized tables of the DBMS (magnetic disk of 1970s) consistent with the

un-normalized key-value pairs stored in a KVS (main memory of 1970s). Physical data in-

dependence is desirable because it enables a CADBMS to hide details of DBMS and KVS

from the application developer to provide functionalitiessuch as transparent cache consis-

tency (maintaining the content of KVS and DBMS consistent with one another seamlessly),

dynamically adjust the content of KVS to enhance overall system performance, and support

different forms of consistency ranging from weak to strong.This is beneficial and superior

to today’s state of the art for two reasons. First, it reducesthe complexity of application

13

www.manaraa.com

1.3.a) Prior to RDBMSs. 1.3.b) CADBMSs today. 1.3.c) Future CADBMSs.

Figure 1.3: Decades of database technology.

software and expedites software development life cycle, empowering application developers

to introduce features more rapidly at reduced costs.

Second, it enhances robustness of the deployed system by preventing software assump-

tions that compromise availability of the data. An example comes from Facebook where, due

to dependence of data on different physical forms of storage, a software component was au-

thored with the assumption that configuration data from the cache is obsolete and erroneous

while its counterpart in the database is correct. Every timethis component observed erro-

neous data from the cache, it would query the database to refresh the cache with correct data.

On September 23, 2010, erroneous configuration data was inserted into the database, caus-

ing this component to overwhelm the DBMS with repeated queries for the correct data [48].

Physical data independence would have avoided both the flawed assumption and the resulting

2.5 hour down time with a price tag of millions of dollars.

1.2 Reader’s Guide

The primary contribution of this dissertation are two frameworks to realize physical data

independence in CADBMSs, see Figure 1.3.c. The first, named SQLTrig, is a transparent

technique that utilizes the structure of the SQL language toauthor triggers on the fly to

maintain the KVS consistent in the presence of updates to theRDBMS. The second, named

the IQ framework, prevents race conditions between the KVS and the RDBMS that cause

them to reflect a different value for a data item, i.e., insertstale data in the KVS.

This dissertation is organized as follows. Chapter 2 presents the current state of the art

in transparent caches and alternative ways to maintain consistency between the KVS and the

RDBMS. Chapter 3 describes two different architectures to realize a CADBMS. Chapter 4

14

www.manaraa.com

describes the Gumball technique and the IQ framework as two alternatives to prevent race

conditions that insert stale data in the KVS. The IQ framework is a successor to the Gumball

technique and handles a wider variety of race conditions including those attributed to the

use of MVCC [16] and snapshot isolation [77]. Chapter 5 presents alternative techniques to

maintain the KVS consistent in the presence of updates to theRDBMS, introducing SQLTrig

as the final decision. Chapter 6 presents the correctness of a system that utilizes SQLTrig in

combination with the IQ framework to cache queries and theirresult sets. We present our

conclusions and future research directions in Chapter 7.

15

www.manaraa.com

Chapter 2

Related Work

Cache augmented RDBMSs have been an active area of research since 1990s [2, 3, 5, 4,

17, 27, 32, 33, 50, 52, 43, 47, 67, 87]. The term CADBMS is used to refer to a subset

with the following characteristic. First, the cache must support simple insert, get and delete

operations [8, 67]. There exist complex caches with the ability to process SQL queries,

e.g., TimesTen [80], DBProxy [3], DBCache [17, 18], Cache Tables[2], MTCache [52],

Ferdinand [34]. While these fall beyond the focus of SQLTrig,these systems may use the

principles outlined by SQLTrig to minimize the amount of software required to maintain

their cache consistent with a RDBMS.

Second, SQLTrig is designed for middle-tier [47, 27, 87, 33,32, 51, 5, 4, 67, 43] caches

at the same abstraction as the RDBMS where security and privacyof content is guaranteed

by the application and its infrastructure. It does not applyto proxy caches [43, 23, 32] that

are external to the application.

Early transparent cache consistency techniques invalidated cached entries at the granular-

ity of either table change or combination of table and columnchange [4]. These are suitable

with web sites that disseminate information (e.g., stock market ticker prices [51], results of

Olympic evens [27]) where a table is the basis of a handful of cache entries. They become

inefficient with applications such as social networking where each row of a table is the basis

of a different cached entry and there are many (billions of) rows and corresponding cache

entries. With these techniques, an update to a row would invalidate many (billions of) cached

key-value pairs even though only a single key-value pair should be invalidated.

TxCache [67] is a transparent caching framework that supports transactions with snap

shot isolation. It is designed for RDBMSs that support multi-version concurrency con-

16

www.manaraa.com

trol [16], e.g., PostgreSQL, and extends them to produce invalidation tags in the presence

of updates. A generated tag is based on a query whose results is used to generate a cached

key-value pair. The tag is for one attribute value of a table (TABLEKEY). This works when

the workload of an application consists of simple exact-match selection predicates. Details

of how this technique works for queries with join predicatesare not clear. SQLTrig can be

adapted to support such queries in TxCache. Moreover, SQLTrig can be used with all SQL

RDBMSs that support triggers because it does not either modifyor require pre-specified

concurrency control technique from the RDBMS.

CacheGenie [43] employs an Object-Relational Mapping(ORM) framework such as Django

to generate the SQL queries, object instances stored in the cache, and DBMS triggers to in-

validate cached objects. It can perform this for a subset of query patterns generated by ORM.

The difference between SQLTrig and CacheGenie are as follows. First, SQLTrig generates

triggers based on the issued SQL queries and not an ORM description. Thus, SQLTrig is

applicable for use with both ORM and non-ORM frameworks. Second, while CacheGenie

caches the results of a query, SQLTrig supports both query result and semi-structured data

caching.

2.1 Consistency

The IQ framework embodies a concurrency control algorithm that guarantees serial schedule

of sessions. There exists a vast number of concurrency control algorithms, most of which are

based on either locking [56, 39, 71], optimistic or commit-time validation [11, 25, 49], and

timestamps [70, 82]. See [15] for a survey of these algorithms and how one may combine

them. IQ most closely resembles locking and least similar tothe timestamp protocols (not

discussed further) because it produces a serial schedule based on how sessions compete to

acquire leases instead of the order in which they are issued to the system. Similar to two-

phase locking (2PL), a session has a growing and a shrinking phase with IQ. Its growing

phase is prior to the RDBMS transaction commit when it acquiresits leases. Its shrinking

phase is after the transaction commit point when it applies its changes to the KVS and re-

leases its leases. IQ is different than lock based protocolsbecause it is non-blocking and

deadlock free.

IQ is also similar to the optimistic concurrency control (OCC)algorithm [11, 25, 49]

technique as it has a read and a write phase. Its write phase occurs after the RDBMS transac-

17

www.manaraa.com

tion commit and, similar to the write phase of OCC, succeeds always. During its read phase,

IQ obtains leases as it validates the values read from the KVS. This concept is missing from

OCC. Moreover, IQ lacks the explicit validation phase of OCC. Instead, it rolls a session

back during its read phase once it detects a conflict using itsIQ leases.

Two studies most relevant to our focus include TxCache [67] and the leases of [62]. We

describe these in turn. TxCache [67] is a transparent cachingframework that extends an

RDBMS with additional software to produce invalidation tags to the KVS. These tags are

generated by the RDBMS updates and cause the KVS to generate versions of the key-value

pairs to implement snapshot isolation with the KVS. Our proposed framework maintains a

single version of a key-value pair and requires no software changes to the RDBMS. More-

over, TxCache’s tags are designed for the invalidate technique. It does not consider the

refresh technique and does not propose use of leases to provide strong consistency.

In [62], Facebook describes how it uses a lease to avoid undesirable race conditions that

cause the KVS to produce stale data with an invalidate technique. In addition, the same

lease is used to prevent thundering herds; a burst of requests observing a KVS miss for the

same key and querying the RDBMS for the same result. We named Facebook’s lease as

the read lease and detailed it in Section 4.2.2. It is implemented in the Twitter memcached

version that we evaluated in Section 4.2.5 and showed to produce stale data, see Table 4.10.

Our proposed I lease is identical to leases of [62]. Our framework is different because it

introduces the Q lease and defines its compatibility with theI lease to reduce the amount of

stale data down to zero. Moreover, our framework supports the refresh technique to update

the KVS. Our implementation of IQ leases enables an application to use both invalidate and

refresh simultaneously.

IQ is designed to provide strong consistency within a data center. One may deploy the

CADBMS solution in different data centers with replicated data, see [62] for an example. To

maintain the replicated data consistent, one may use a technique such as parallel snapshot

isolation [77], eventual consistency [85], per-record timeline consistency [28], causal+ [53]

and others. While these techniques focus on network partitions, IQ focuses on normal mode

of operation and use of leases to prevent undesirable race conditions. Our objective is to

satisfy the freshness property and provide strong consistency with no modification to the

RDBMS software.

There are mid-tier caches that process SQL queries [3, 54, 18, 52, 2, 80]. These caches

maintain fragments of the RDB to distribute processing of queries across the caches and

18

www.manaraa.com

backend servers intelligently. The cached data is maintained consistent with the changes to

a backend server using a variety of techniques such as use of materialized views with asyn-

chronous data replication [54], computing changes and shipping them to the caches [3, 18],

shipping log records [52], and invalidation of the impactedrows [2]. Our target CADBMS

architecture is different as the KVS maintains unstructured key-value pairs. It has no abil-

ity to process SQL queries and provides a simple interface that supports commands such as

get and set, see second column of Table 4.4. Thus, the KVS doesnot incur the overhead

of query processing estimated at a high percentage of usefulwork performed by today’s

RDBMSs [45].

2.2 Materialized Views and Key-Value Pairs

A key-value pair used in CADBMSs shares similarities with a materialized view, MV, of a

RDBMS. Both involve maintaining a separate physical copy of thedata in order to enhance

the velocity of data intensive applications. This section is presented as a series of questions

to help describe each approach and distinguish between the two.

What is a view?

A view is a virtual table defined using an expression that references other tables in a relational

database management system (RDBMS). It is re-computed every time a query references the

view. A view might be authored using SQL, relational algebra[41], datalog and others [21].

This writing assumes SQL.

What is a materialized view?

A materialized view (MV) stores the tuples of the view in the database. One may construct

index structures on the materialized view. Hence, accessesto the view are much faster than

re-computing it. Typically, a database administrator (DBA) analyzes the workload of an ap-

plication to authors MVs and their indexes. For an example with data warehousing queries

see [74]. This study shows MVs enhance the performance of row-stores significantly. Se-

lecting which virtual views to materialize, the view selection problem, has been studied

extensively [73, 41, 42].

19

www.manaraa.com

It is time consuming for a RDBMS to materialize a view and its indexes. Hence, in the

presence of updates to the base tables referenced by a MV, it is not efficient to drop the MV.

Instead, MVs are maintained up to date incrementally [41, 72, 59]. This approach computes

changes to the MV and applies them to the MV to bring it up to date.

A query optimizer may employ a MV to process SQL queries that do not reference it

explicitly [75, 59]. Moreover, a physical database design adviser may recommend index

structures on a MV as it is a table [1, 20].

What is a Key-Value Store (KVS)?

A KVS maintains key-value pairs consisting of a unique identifier (key) associated with some

arbitrary data (value). It provides a simple interface suchas put, get, and delete to store,

retrieve, and delete key-value pairs. It provides little orno ability to interpret its value with

no query mechanism for the content of the values [24, 79]. A popular KVS is memcached

in use by many popular Internet destinations such as YouTubeand Wikipedia.

What is a Cache Augmented DBMS (CADBMS)?

Cache Augmented Database Management System, CADBMS, systems are an important

class of distributed systems, targeting applications witha high read to write ratios. These

systems augment a RDBMS with a KVS to enhance overall velocity of operations that re-

trieve and process a very small amount of the entire data set [2, 3, 5, 4, 17, 27, 32, 33, 50,

52, 43, 47, 67, 87]. They may materialize either the results of a query (key=query string,

value=result set computed by the RDBMS) or a code segment (key=unique identifier for the

code segment constructed using its input, value=output of the code segment) as key-value

pairs in the KVS. This enhances performance because a cache look up is much faster than

executing either a SQL query or a code segment that issues several queries. In the presence

of updates to the tabular data, a CADBMS solution may maintain the cached key-value pairs

consistent transparently [5, 4, 27, 32, 33, 43, 67].

How are materialized views similar to cached key-value pairs?

Both MV and key-value pairs store a separate physical copy of the tabular data. This copy

must be maintained consistent with the base tables. The RDBMS automatically maintains

20

www.manaraa.com

MVs consistent and serialize transactions to provide ACID properties, e.g., by using the RE-

FRESH ON COMMIT. Similarly, transparent caching techniques maintain key-value pairs

consistent in the presence of updates to the RDBMS. For example, TxCache [67] imple-

ments snap-shot isolation and one may configure SQLTrig to implement serial schedules.

Both MVs and key-value pairs might be used to enhance velocityof data retrieval by

approximating the final answers of a posed query. For example, an application may utilize

REFRESH ON DEMAND option when authoring a MV and update it periodically. Queries

processed using such views may observe stale data. Similarly, a CADBMS system may

incrementally update key-value pairs and cause the application to observe either stale data

[51] or suffer from dirty reads [43].

How are materialized views different than cached key-valuepairs?

MVs and key-value pairs are suitable for different application classes. MVs enhance per-

formance of decision support applications and their On-Line Analytical Processing (OLAP).

KVS and key-value pairs enhance performance of queries thatread a very small amount of

entire dataset repeatedly. Thus, one is not a substitute forthe other. This is elaborated on

below.

SQL queries used to compute a MV typically retrieve many rows. It is not uncommon

to find index structures on a MV to expedite processing of SQL queries that reference it.

In contrast, a key-value pair corresponds to an SQL query (ora code segment) that is very

selective (outputs a few values), e.g., retrieve the profileinformation of a member of a social

networking site given the users login and password. A CADBMS enhances the performance

of interactive operations when its key-value pairs are accessed far more frequently than they

are updated. This is because a key-value look up is faster than processing SQL queries [37].

With a CADBMS, there may exist millions (if not billions) of key-value pairs pertaining

to different instances of a simple SQL query whose results are cached as key-value pairs

in the KVS. For example, with a social networking application, each SQL query issued on

behalf of a member to retrieve her profile might be a key-valuepair in the KVS. In contrast,

there exists a few (in the order of tens of) MVs authored by a database designer to enhance

overall system performance based on a known or expected workload.

SQL queries that are the basis of a key-value pair with a relational CADBMS are much

faster to execute than those that are the basis of a MV with a RDBMS. This explains why

RDBMSs maintain MVs instead by incrementally updating them while CADBMS systems

21

www.manaraa.com

invalidate key-value pairs by deleting and re-computing them.

Finally, a MV is typically created by a human and crafted to specifically meet the ex-

pected needs for an OLAP workload. The workload should be known in advance in order

to use MVs effectively. On the other hand, a CADBMS with a transparent cache generates

key-value pairs dynamically as a workload executes. It doesnot require advanced knowledge

of the workload. (When a CADBMS in employed non-transparently,a human participates

to identify code segments whose results should be cached.)

Can MVs and key-value pairs co-exist?

MVs and key-value pairs are implemented by different components and may co-exist. While

a RDBMS implements MVs, a KVS implements key-value pairs. Thus, one may use the

RDBMS of a CADBMS to author MVs to enhance processing of OLAP queries. And use its

KVS to cache the result of OLAP queries in order to expedite the processing of those issued

repeatedly. A query optimizer extended with a cache managerfor data warehouses and data

marts was explored in [75]. Extensions of these ideas to a CADBMS is a future research

direction.

Is it possible to use MVs as a substitute for key-value pairs?

MVs are not a substitute for key-value pairs. This is shown using the view profile action of

the BG benchmark [12]. This action is a simple SQL query that retrieves profile information

(a row) of a Member table with 10,000 rows (members). BG issues100,000 view profile

requests in turn. Each request references a member. Using a commercial RDBMS, the

average execution time of this query is 2.5 milliseconds. Ifone defines 10,000 MVs (one

for each query) and executes the same workload, the average execution time of each query

increases to 6 milliseconds. Using a CADBMS with a cold cache, the average execution of

the query is 1.5 milliseconds. A warm cache with 10,000 key-value pairs (one per query)

reduces this time to 0.3 milliseconds.

22

www.manaraa.com

Chapter 3

System Architectures

3.1 Client Server Architecture

Figure 3.1 shows the architecture of a typical cache augmented Relational Database Manage-

ment System (RDBMS). The application communicates with the RDBMS through a client

(eg. JDBC) and similarly to the cache through its own client, typically through a TCP or

UDP connection. The cache layer can be comprised of multiplecache nodes, potentially

hundreds of nodes, representing a large memory space.

One example application that utilizes this architecture isa social networking site, such

as Facebook [76]. The RDBMS serves as a persistent data repository that can be queried

or modified under the relational model. When a user makes a request for their profile page,

the application issues one or more SQL queries to the database and processes their results in

order to generate a HTML document that is returned to the user.

This on-the-fly generation of data to satisfy requests is referred to asdynamicweb as

opposed tostaticweb, where data does not change. While static web can easily becached

to improve performance, dynamic web requires a more carefulapproach. With dynamic

web, the data can change between every request producing a different result every time. In

such cases, caching will yield no benefit and could actually slow the system down due to

overhead.

However, if the underlying data changes infrequently (i.e.updates are rare compared

to reads), then the application will produce the same final HTML document every time the

same request is made. Instead of requiring the application to issue multiple queries to the

database every time, a cache can be used to store this final HTML document and serve the

23

www.manaraa.com

Figure 3.1: Cache augmented RDBMS architecture.

request.

In order to do this, the application is modified to be aware of the cache. A developer iden-

tifies a fusion code segmentCSfuse in the application that consumes some input to produce

an output.CSfuse might be complex, consisting of arbitrary loop and branch programming

constructs. Each branch may execute a different sequence ofSQL queries depending on the

results of an earlier query in the sequence. The final output of CSfuse is a value. This is

associated with a developer specified logical key that mightbe constructed using the value

of one or more of the input parameters. The developer extendsCSfuse as follows (Steps 1 to

5 correspond with arrows 1 to 5 in Figure 3.1):

1. Look up the cache using the key corresponding to the code segment,ki.

2. If the data,di, is found in the cache, skip to Step 6. Otherwise, continue with Steps 3

- 5.

3. Issue SQL queries based on the application logic inCSfuse.

4. RDBMS returns the query results. The application constructs the HTML page using

the results.

5. Store the page asdi into the cache under the keyki.

24

www.manaraa.com

6. Return the datadi as the resulting HTML page.

By utilizing a cache, the system can skip the multiple queriesand application processing

in steps 3 - 4 every time the required HTML page is found in the cache. This helps reduce

the network traffic and the number of round trips required as well as the amount of work that

needs to be done on both the application server and the RDBMS. However, when the cache

does not contain the requiredki- di pair, the system incurs the additional communication

overhead of checking the cache and populating it with the constructed result. This scenario

occurs when: (i) the cache is brought on-line and starts in anempty state, (ii) a previously

storedki-di pair was evicted to free up memory on a heavily utilized cache, or (iii) a previ-

ously storedki-di pair was invalidated because the cached copy no longer matched the data

on the RDBMS.

Since the cache holds an independent copy of the data, whenever a change occurs to the

data in the RDBMS, the copy in the cache becomes out-of-sync. Inorder to ensure that the

cache produces data that is consistent with the database, the application developer is required

to author code which explicitly maintains the consistency of the data in the cache. Every time

an update occurs to the RDBMS, the copy of the data in the cache which was affected by

this change has to be invalidated. The problem with this approach is that the developer is

required to have sufficient understanding of the application logic in order to correctly author

the invalidation code. In larger code bases, this approach is error-prone and can lead to bugs

which affect the entire system. An example of this was Facebook’s outage in 2010 which

was caused by an error in their consistency checking software [48]. When the application

logic changes, the invalidation code has to be re-authored,thus exposing the software to

more possible bugs. Furthermore, changes to the data made outside of the expected code

path (eg. updates made directly to the database) might not becaptured by the invalidation

logic and result in a cache serving stale data.

The transparent caching techniques, described in Chapter 5,rely on two mechanisms,

(i) cues from the application to indicate the data dependencies of cachedki-di pairs and (ii)

notification from the RDBMS when a relevant change is detected.The cues that can be

used are readily available: the SQL queries which are being issued by the application to

the RDBMS. By intercepting these queries through a RDBMS client wrapper, the system

automatically identifies these queries without additionalchanges required to the application

software. The framework keeps track of these dependencies in order to determine which

cache entries are affected whenever a change is detected in the database. There are two

25

www.manaraa.com

different mechanisms examined by this study that can be usedto detect these changes, Query

Change Notification and Triggers. Further detail on the workings and differences between

the two mechanisms are provided in Chapter 5. In both cases, a change is detected at the

RDBMS and a notification is issued to the cache. The cache then processes the notification

to determine which cache entries were affected. One thing tonote is that it is important

that the notifications and corresponding invalidations areas fine-grained as possible, in order

to avoid unnecessary invalidations of unaffected cached data. Excessive invalidations will

lower the cache hit rate and thus, lead to poor system performance.

The following describes two approaches to realize physicaldata independence in CADBMSs:

1. Migrate CADBMS into a mature database technology such as a RDBMS (or a NoSQL

such as Couchbase [30]), implementing a KVS transparently beneath a high level lan-

guage such as SQL (or a programmable interface using JSON-like representation of

data).

2. Use an Object-Relational Mapping (ORM) framework such as Hibernate or Django to

embody a CADBMSs as a middleware.

One may migrate a CADBMS into an RDBMS at different abstraction levels. It might be

implemented by the query optimizer and execution engine of aRDBMS [67]. Alternatively,

it might be implemented by the client component of a RDBMS such as its JDBC driver [37].

Below is a description of the latter.

One may extend the JDBC driver of a RDBMS to intercept queries andlooks up their

(serialized) result set in the cache. If a value is found thenit is deserialized and returned to

the application. Otherwise, the query is executed using theRDBMS, returning the result set

to the application. To maintain the KVS and the RDBMS consistent transparently, the ex-

tended JDBC driver may utilize query change notification mechanism of a RDBMSs by reg-

istering queries that are the basis of a cached query result set [37], (key=query, value=result

set). Query change mechanism is a recent feature supported by Oracle 11g and Microsoft

SQL Server 2005 and 2008 editions. When an update changes the state of the database, the

RDBMS notifies the KVS of those queries whose results have changed. The KVS maintains

a mapping of queries to key-value pairs and either invalidates or refreshes the impacted key-

value pairs. This technique is not viable today because the change notification mechanism

of RDBMSs is in its infancy and suffers from the following limitations. First, they support

a limited class of queries. None support simple aggregate queries (e.g., count Joe’s number

26

www.manaraa.com

of friends) that are central to diverse applications. Second, the time to register a query is sig-

nificant and slows down updates so dramatically (tens of seconds) that it is difficult to argue

the action is interactive [37]. To address this limitation for those applications that tolerate

stale data, the CADBMS may perform RDBMS updates asynchronously. This may cause

a transaction to not observe its own update and be unacceptable for those applications that

demand consistent reads. For change notification to be a building block of physical data in-

dependence, it must evolve to support a larger class of SQL queries while registering queries

(at bursts of thousands per second) and processing RDBMS updates quickly.

With the second approach, the CADBMS will be a pass through entity that directs SQL

queries either for execution to its RDBMS component or look up in the KVS. As an example,

CacheGenie [43] consumes high-level description of Django (an ORM framework) objects to

generate SQL queries, object instances stored the KVS (memcached), and RDBMS triggers

to either propagate RDBMS updates to key-value pairs or invalidate them. CacheGenie frees

the developer from managing the KVS or maintaining it consistent with the RDBMS. It ob-

serves a factor of 2.5 improvement in throughput for read-mostly workloads in Pinax (when

compared with the RDBMS). While it is not clear whether this approach is feasible with all

object descriptions, it is a promising approach toward realizing physical data independence.

Once an approach to realize physical data independence is identified, one may formalize

the interaction between the RDBMS and the KVS to identify functionalities of a CADBMS,

consistency and availability of data, and administrative tools to maintain a deployment. To

elaborate, consider the first approach to physical data independence assuming industrial

strength RDBMSs mature to support query change notification efficiently. The high level

language of this approach might be SQL. The resulting CADBMS may use its RDBMS

component to support materialized views to improve performance of certain queries. It may

store the result of queries that reference these views as key-value pairs in the KVS, expedit-

ing their subsequent reference.

The SQLTrig framework solves these problems by modifying the architecture to abstract

away the cache as a distinct entity that needs to be separately maintained. The developer

can assume that they are interacting with a unified data repository as shown in Figure 3.2.

No custom code needs to be authored to maintain the consistency of the cache as it will

be handled automatically by the framework. Underneath, SQLTrig realizes the physical

architecture by utilizing transparent caching techniques, Figure 3.3.

27

www.manaraa.com

Figure 3.2: Conceptual Architecture as seen by the developer.

Figure 3.3: Physical Architecture as implemented by the SQLTrig framework.

28

www.manaraa.com

Figure 3.4: Physical Architecture as implemented by the SQLTrig framework.

3.2 Shared Address Space Architecture

An alternative architecture, namedshared address space(SAS), requires the KVS to run

in the address space of the application, see Figure 3.4. Example KVSs include Terracotta

Ehcache [81] and JBoss Cache [22]. They operate in either stand-alone or in a distributed

mode. With the latter, a key-value pair might be replicated either across a subset or all appli-

cation+KVS instances. The KVS may implement the concept of atransaction to atomically

update all replicas of a key-value in different instances.

When compared with the Client Server architecture, SAS may slow down writes in order

to improve the performance of reads. Performance of reads isenhanced by eliminating

the overhead of retrieving a value across the network, uncompressing and deserializing it.

Writes might be slowed down because they must propagate to allreplicas of a key-value pair

in different KVS instances, see Figure 3.4. When writes are rare, SAS may outperform the

Client Server architecture dramatically (order of magnitude or more). While the prototype

transparent cache CADBMS was implemented in a Client Server architecture with SQLTrig,

the same concepts can be applied to a SAS architecture to extend it with a transparent caching

layer.

29

www.manaraa.com

Chapter 4

Consistency

4.1 Gumball

In the presence of updates to the RDBMS, a consistency technique deployed either at the

application or the RDBMS may delete the impacted cached key-value pairs. This delete

operation may race with a look up that observes a cache miss, resulting in stale cached data.

As an example, consider Alice who is trying to retrieve her profile page while the web

site’s administrator is trying to delete her profile page dueto her violation of the site’s terms

of use. It is possible for an interleaved execution of these two logical operations leave the

KVS inconsistent with the database such that the KVS reflectsthe existence of Alice’s profile

page while the database is left with no records pertaining toAlice. A subsequent reference

for the key-value pair corresponding to Alice’s profile pagesucceeds, reflecting Alice’s ex-

istence in the system. This inconsistent state is the resultof race conditions that occur in

CADBMS and the inconsistent cache object can remain indefinitely if it is never updated

with the latest value.

To illustrate a race condition, assume the user issues a request that invokes a segment

of code (CSfuse) that references akj − vj pair that is not KVS resident because it was just

deleted by an update issued to the RDBMS (i.e. Alice referencing her profile page after

updating her profile information). The administrator who istrying to delete Alice from the

system invokes a different code segment (CSmod) to deletekj−vj. Even though bothCSfuse

andCSmod employ the concept of transactions, their KVS and RDBMS operations are non-

transactional and may leave the KVS inconsistent. One scenario is shown in Figure 4.1.a

whereCSfuse looks up the KVS and observes a miss, Arrows 1 and 2 of Figure 3.1, and

30

www.manaraa.com

4.1.a) Acceptable.

4.1.b) Undesirable.

Figure 4.1: Two interleaved processing ofCSfuse andCSmod referencing the same key-value
pair.

31

www.manaraa.com

computeskj − vj by processing its body of code that issues SQL queries (a transaction)

to the RDBMS to computesvj, Arrows 3 and 4 of Figure 3.1. Prior toCSfuse executing

Arrow 5, CSmod issues its transaction to update the RDBMS and deleteskj from the KVS.

Next,CSfuse insertskj − vj in the KVS. This schedule, see Figure 4.1.b, renders the KVS

inconsistent with the RDBMS. A subsequent look up ofkj from KVS produces a stale value

vj with no corresponding tabular data in the RDBMS.

In sum, a race condition is an interleaved execution ofCSfuse andCSmod with both refer-

encing the same key-value pair. Not all race conditions are undesirable; only those that cause

the key-value pairs to become inconsistent with the tabulardata. An undesirable race condi-

tion is an interleaved execution of one or more threads executing CSmod with one or more

threads executingCSfuse that satisfy the following criteria. First, the thread(s) executing

CSfuse must construct a key-value pair prior to those threads that executeCSfuse that up-

date the RDBMS. And,CSmod threads must delete their impacted key-value pair from KVS

prior to CSfuse threads inserting their computed key-value pairs in the KVS. Figure 4.1.b

shows an interleaved processing that satisfies these conditions, resulting in an undesirable

race condition. The race condition of Figure 4.1.a does not result in an inconsistent state and

is acceptable.

4.1.1 Gumball Implementation

Gumball Technique (GT) is designed to prevent the race conditions of Section 4.1 from

causing the key-value pairs to become inconsistent with tabular data. It is implemented

within the KVS by extending its simple operations (delete, get and put) to manage gumballs,

see Table 4.1. Its details are as follows. When the server receives a delete(ki) request, and

there is no value forki in the KVS, GT stores the arrival time of the delete (Tdelete) in a

gumballgi and inserts it in the KVS with keyki. With several delete(ki) requests issued

back to back, GT maintains only onegi denoting the time stamp of the latest delete(ki). GT

assigns a fixed time to live,∆ , to eachki−gi to prevent them from occupying KVS memory

longer than necessary. The value of∆ is computed dynamically.

When the server processes a get(ki) request and observes a KVS miss, GT provides

the KVS client component (client for short) with the miss time stamp,Tmiss. The client

maintainski and itsTmiss time stamp. OnceCSfuse computes a value forki and performs

a put operation, the client extends this call withTmiss. With this put(ki,vi,Tmiss), a GT

32

www.manaraa.com

delete(ki)
1) If ki-vi exists then deleteki-vi and generate gumballgi, i.e., ki-gi, with Tgi set to the
current time.
2) If ki-gi exists then changeTgi to the current time.
3) If no entry exists forki then generategi, i.e.,ki-gi, with Tgi set to the current time.

get(ki)
1) If ki-vi exists then returnvi.
2) If eitherki-gi exists or no entry exists forki then report a cache miss with current time as
Tmiss time stamp.

put(ki, vi, Tmiss)
1) LetTC be the server system time.
2) If (TC - Tmiss) then ignore the put operation.
3) If (gi exists andTmiss is beforeTgi) then ignore the put operation.
4) If (vi exists and its time stamp is afterTmiss) then ignore the put operation.
5) If (Tmiss < Tadjust) then ignore the put operation.
6) Otherwise, insertki-vi with its time stamp set toTmiss.

Table 4.1: GT enabled delete, get, and put pseudo-code. All time stamps are local to the
server containingki − vi.

enabled KVS server comparesTmiss with the current time (TC). If their difference exceeds

∆ , TC−Tmiss > ∆ , then it ignores the put operation. This is because a gumballmight have

existed and it is no longer in the KVS as it timed out. Otherwise, there are three possibilities:

Either (1) there exists a gumball forki, ki − gi, (2) the KVS server has no entry forki, or

(3) there is an existing value forki, ki − vi. Consider each case in turn. With the first, the

server comparesTmiss with the time stamp of the gumball. If the miss happened before thegi

time stamp,Tmiss < Tgumball, then there is a race condition and the put operation is ignored.

Otherwise, the put operation succeeds. This meansgi (i.e., the gumball) is overwritten with

vi. Moreover, the server maintainsTmiss as metadata for thiski− vi (thisTmiss is used in the

third scenario to detect stale put operations, see discussions of the third scenario).

In the second scenario, the server insertski − vi in the KVS and maintainsTmiss as

metadata of this key-value pair.

In the third scenario, a KVS server may implement two possible solutions. With the

first, the server comparesTmiss of the put operation with the metadata of the existingki − vi

pair. The former must be greater in order for the put operation to over-write the existing

value. Otherwise, there might be a race condition and the putoperation is ignored. A more

expensive alternative is for the KVS to perform a byte-wise comparison of the existing value

33

www.manaraa.com

with the incoming value. If they differ then it may deleteki − vi to force the application to

produce a consistent value.

GT ignores the put operation with both acceptable and undesirable race conditions. For

example, with the acceptable race condition of Figure 4.1.a, GT rejects the put operation of

CSfuse because itsTmiss is beforeTgumball. These reduce the number of requests serviced

using the KVS. Instead, they execute the fusion code that issues SQL queries to the RDBMS.

This is significantly slower than a KVS look up, degrading system performance. Since the

occurrence of this race condition is typically rare, the impact on overall system performance

is negligible.

One limitation of GT is that it may allow the KVS to store staledata if the RDBMS

is configured with snapshot isolation1 [77]. This race condition is elaborated further in

Section 4.2.2. GT does not capture information on the order in which transactions are issued

to the RDBMS, which prevents it from being able to resolve race conditions due to snapshot

isolation. This motivates the need for the IQ framework described in Section 4.2 which

supports snapshot isolation as well.

4.2 IQ Leases

A challenge of CADBMSs is how to maintain key-value pairs of theKVS consistent in the

presence of updates to the RDB. Key-value pairs impacted by an RDBMS update can either

be invalidated [47, 26, 27], refreshed [26], or incrementally updated [43], see Chapter 5 for

further details. The focus of this section is on the first two techniques, see Figure 4.2. (Sup-

port for incremental update is a future research direction,see Chapter 7.) With invalidate, the

application is authored to delete the impacted key-value pairs. A subsequent reference for

these keys observes a KVS miss, executes the computation that queries the RDBMS to com-

pute a new value, and inserts the resulting key-value pair inthe KVS. One may implement

this technique by authoring RDBMS triggers on a table. These are invoked when a row is

inserted/deleted/updated. They compute the impacted keysand delete them from the KVS.

With SQLTrig, these triggers are generated dynamically.

With the refresh technique, the application identifies the impacted keys, reads their values

1With snapshot isolation, the RDBMS allows read transactions to proceed simultaneously with a write
transaction by maintaining multiple versions of the data. The read transactions are serialized to occur before
the write transaction, thus ensuring that transactions areconsistent for a given snapshot in time.

34

www.manaraa.com

4.2.a. Invalidate 4.2.b. Refresh

Table 4.2: Two techniques to maintain the key-value pairs ofthe KVS consistent with updates
to the tabular data in the RDBMS.

and modifies them to obtain new values, and writes the new key-value pairs back to the KVS,

see Figure 4.2.b. Note that refresh is more complex than invalidate because it must go one

step further and compute a new value for each impacted key. Hence, it is rare to find this

technique implemented as triggers because the RDBMS is typically the slowest component

and complex triggers render it slower.

We define a session as a sequence of at most one RDBMS transactionand multiple

KVS operations, see Table 4.3 and Section 4.2.1 for a formal definition of these terms.

When concurrent sessions use invalidate and refresh, they may incur a variety of undesir-

able race conditions that cause a session to observe stale data from the KVS. We propose a

novel framework named IQ that serializes all concurrent sessions regardless of whether they

read/write/read-modify-write RDB data using the RDBMS or key-value pairs using KVS.

This is termedstrong consistencyand it is desirable as it makes systems easier for a program-

mer to reason about [53]. The framework is designed for a networked CADBMS consisting

of multiple sharded (or replicated) RDBMSs and KVSs. We assumethe RDBMS instances

and KVS instances implement strong consistency of their ownindependently. Strong con-

sistency during normal model of operation is a challenging topic and constitutes the focus of

this section.

A key ingredient of strong consistency is thefreshnessproperty of the KVS read oper-

ations. This property requires each KVS read to observe a key-value pair that reflects the

most up to date version of the RDB, see Section 4.2.1 for a formaldefinition. We implement

the freshness property using two leases, Inhibit (I) and Quarantine (Q). The KVS grants an

I lease to a session when its referenced key observes a miss. When a session intends to

35

www.manaraa.com

Term Definition
BG Action An interactive social networking activity such as invite friend, see Table 5.5.
Command An atomic implementation of an operation using either a KVS or

an RDBMS, see last two columns of Table 4.4.
KVS A key value store such as memcached.
Operation Read (R), Write (W), Delete, Read-Modify-Write (R-M-W) using either

the KVS or the RDBMS, see Table 4.4.
Transaction A logical sequence of one or more RDBMS operations executed atomically.
RDB A relational database.
RDBMS A relational database management system such as MySQL.
Session A sequence of operations consisting of at most one RDBMS

transaction and one or more KVS operations.

Table 4.3: List of terms and their definitions.

write/delete a key, it must obtain a Q lease on the key from theKVS. Sections 4.2.2 and

4.2.3 detail how IQ leases handle race conditions, including those discussed for Gumball in

Section 4.1, in the context of invalidate and refresh. With simple sessions that implement

social networking actions, we present benchmarking results in Section 4.2.5 that show these

leases reduce the amount of stale data to zero with minimal impact on system performance.

4.2.1 Overview

Our proposed IQ framework targets CADBMS systems realized using an off-the-shelf RDBMS

and a key-value store that supports simple operations such as get, set, compare-and-swap,

and delete. No changes to the RDBMS software are necessary to implement the framework.

Instead, we extend the KVS with new commands that implement the I/Q leases. In addi-

tion, we introduce a simple programming model for how these commands must be used in

combination with the RDBMS transactions to implement sessions (see below for a formal

definition). This model requires a session to acquire and release leases in a manner similar

to the two phase locking protocol [56, 39, 71]. The frameworkis non-blocking and deadlock

free. It may delete key-value pairs and abort and re-start sessions to realize strong consis-

tency.

This section provides an abstraction of the different operations supported by the KVS

and the RDBMS. We use these to formally define a session and the freshness property. Sub-

sequently, we present the I and Q leases used to implement thefreshness property with

invalidate and refresh.

36

www.manaraa.com

Operation memcached commandSQL command

Read get SELECT ... FROM ... WHERE ...
Write set INSERT INTO tblname
Delete delete Delete FROM tblname WHERE ...
R-M-W get, set/cas UPDATE tblname SET ... WHERE ...

Table 4.4: Alternative actions and their implementation with memcached and a SQL system.

The focus of this study is on simple read (R), write (W), delete,and read-modify-write

(R-M-W) operations that manipulate a small amount of data. While these operations are

well defined with SQL (see the third column of Table 4.4), their implementation with a KVS

may vary from one system to another. We focus on a variant of memcached [55, 68] in Sec-

tion 4.2.4 to describe an implementation of the freshness property. The second column of

Table 4.4 shows the different memcached commands that implement the alternative opera-

tions.

One may implement the R-M-W operation of the RDBMS as a transaction that provides

Atomicity, Consistency, Isolation, and Durability (ACID) properties [40]. With memcached,

one may use compare-and-swap (cas instead of set for W) to realize an atomic implemen-

tation of R-M-W. The idea is to maintain the old value (vold) retrieved by the R operation,

apply the M to compute a new value (vnew), and implement the W operation with cas using

vold andvnew. When the cas fails, the application may re-try the operationstarting with the

R.

We define asessionas a sequence of operations consisting of at most one RDBMS trans-

action and several KVS operations. Each RDBMS operation is a transaction with ACID

properties. A session starts when it executes its first operation. With no leases, the end of a

session is when it performs its last operation. When configured with leases, a session ends

once it has released its last acquired lease.

Table 4.5 shows the existence of the different KVS operations with invalidate and refresh.

Invalidate does not use the R-M-W operation with the KVS as it always deletes a key-value

pair that is impacted by a change to the RDBMS. With refresh, theapplication may fetch a

key-value pair from the KVS, modify it in its memory, and write it back to the KVS.

The freshnessproperty applies to a KVS read operation. It requires every key-value

pair in the KVS to reflect the latest state of the relational database (RDB) in the RDBMS.

Formally, for each keyki in the KVS, each corresponding valuevi must correspond to a

37

www.manaraa.com

Operation Invalidate Refresh

Read X X

Write X X

Delete X X

R-M-W X X

Table 4.5: Presence of KVS operations with invalidate and refresh.

4.6a. Invite Friend 4.6b. Confirm Friend

Table 4.6: Pseudo-code of two interactive social networking actions implemented as sessions
with no leases.

38

www.manaraa.com

functionf that performs its computation using the RDB produced by the latest session (Slast)

that completed its changes to the RDB:

{∀(ki, vi), ki ∈ KV S, vi ≡ f(RDB,Slast)} (4.1)

Multiple sessions may execute concurrently and overlap in arbitrarily complex ways. The

freshness property ensures strong consistency for the simple operations of Table 4.4 by re-

quiring the CADBMS to serialize concurrent sessions as if theyexecuted in isolation one

after another.

To realize the freshness property, we introduce two leases named Inhibit (I) and Quaran-

tine (Q). The KVS grants these leases on a key. The I lease is issued on a key when the KVS

observes a miss for the key referenced by the KVS read operation. The Q lease is issued

when the application intends to either delete or write a value for a key. Leases collide when

they reference the same key. Refresh and invalidate handle collisions in different ways, see

Table 4.7 and discussions of Sections 4.2.2 and 4.2.3.

A lease for a key has a fixed life time and is granted to one KVS connection (thread)

at a time. The finite life time enables the KVS to release the lease and continue processing

operations in the presence of node failures hosting the application. This is particularly true

with refresh due to how it uses the Q leases: If the KVS holds Q leases indefinitely (similar

to locks) then node failures may degrade system performanceseverely. With time outs,

the KVS recovers from node failures that prevent an application from releasing it lease.

Section 4.2.4 describes how to decide the life time of leases.

A contribution of this study is to ensure that the serial schedule of concurrent sessions

performing R-M-W operations (using refresh) is identical with both the RDBMS and the

KVS. This is realized using the I/Q leases and a programming framework for their usage.

Section 4.2.4 describes an implementation of a KVS client that hides the concept of leases

and their back off from the programmer, simplifying their usage. Table 4.8 shows two dif-

ferent re-writes of the pseudo-code of the “Invite Friend” to use the I/Q leases.

The next two sections detail how invalidate and refresh employ the I/Q leases to provide

strong consistency.

39

www.manaraa.com

4.2.2 Invalidate

This section describes the race conditions that cause invalidate to violate the freshness prop-

erty. Subsequently, we present how the Inhibit (I) and Quarantine (Q) leases are used to

prevent these race conditions.

Problem Definition

This section starts with an overview of the read lease of [62]and how it prevents undesirable

race conditions between (1) sessions that update the RDBMS anddelete key-value pairs from

the KVS and (2) sessions that observe a KVS miss to compute a value and insert it in the

KVS. Next, this solution is shown to violate the freshness property when the RDBMS is

configured2 with snapshot isolation and the session employs RDBMS triggers to invalidate

key-value pairs. Finally, it is observed that even when the session deletes its impacted keys

after the transaction commits, there may exist a window of time when the KVS does not

satisfy the freshness property and produces stale data. Section 4.2.2 employs the I/Q leases

to resolve these limitations.

The read lease of [62] is identical to the I lease presented inSection 4.2.1. The KVS

grants this lease to a session that encounters a miss for a referenced key that has no pending

read lease, providing the session with a token. The session may query the RDBMS, compute

a value for the key and insert the key-value using its token. The KVS inserts the provided

key-value pair only if the token identifies a valid lease. TheKVS invalidates a lease for a

key if it receives a delete for the key. It ignores all insertswith tokens that reference an

invalid lease. This enables the KVS to prevent potential race conditions where a KVS miss

computes and inserts a stale value.

Multiple KVS misses may reference the same key. In this case,the KVS grants a read

lease to one caller and requires others to back off for a pre-specified duration of time and

repeat their KVS read. This back off time may increase exponentially as a requester collides

with other requesters repeatedly for the same key [62].

The read lease by itself does not prevent a CADBMS system from producing stale data

when the RDBMS employs snapshot isolation. Snapshot isolation guarantees (1) all reads

made in a transaction observe a consistent snapshot of the RDBand (2) the transaction

2Numerous industrial strength RDBMSs provide multi-version concurrency control [16] which offers snap-
shot isolation to enhance concurrency of transactions and improve application performance.

40

www.manaraa.com

Figure 4.2: Snapshot isolation enables Session 2 to computeand insert a stale value in the
KVS.

Figure 4.3: Deletion of key-value pairs after transaction commit point results in an inconsis-
tency window.

will commit only if none of its updates conflict with any concurrent updates made since

that snapshot. With invalidate, snapshot isolation results in two different undesirable race

conditions that violate the freshness property. We describe these in turn.

The first race condition is when the sessions use RDBMS triggersto invalidate key-

value pairs. These triggers execute as a part of the transaction that updates the RDBMS,

sayT1. After the trigger deletes the impacted key-value pair and prior to the commit point

of T1, another session (Session 2,S2) may perform a KVS look up for the impacted key.

S2 observes a miss and queries the RDB to compute a value using theRDB state prior toT1

committing, see Figure 4.2.S2 inserts this stale key-value pair in the KVS. AfterT1 commits,

the key-value pair inserted byT2 is no longer valid. A subsequent read for this key-value pair

violates the freshness property.

One may try to solve the limitation shown in Figure 4.2 by requiring the session to delete

the impacted key-value pairs after its RDBMS transactions commit. This approach may

41

www.manaraa.com

results in an inconsistency window during which the system violates the freshness property.

This is illustrated in Figure 4.3 that shows a Session 2 (S2) performing a KVS look up for

the same key-value pair as Session 1 (S1). S2 observes a miss and queries the RDBMS

concurrently with the transaction that performs the write of S1. Snapshot isolation enables

the RDBMS read ofS2 (Step 2.3) to compute its result using an old RDB state. The window

of time between Step 2.5 to whenS1 deletes the key enables a KVS read to violate the

freshness property.

A possible solution is to require the KVS delete to occur as a part of the transaction

commit. However, we are not aware of an RDBMS that enables one toimplement this

solution.

Solution

We resolve the race conditions described in the problem definition by requiring a transaction

to obtain a Q lease on a key that it intends to delete. After thetransaction commits, the

application issues a KVS delete for the key, purging the key and releasing its Q lease. While

there is a Q lease on a key, the KVS ignores all write operations for the key. However, all

reads for the key are satisfied as long as they observe3 a KVS hit. Those reads that observe a

KVS miss must obtain an I lease for their referenced key. When this collides with an existing

Q lease, the read must back off and try again. See Table 4.7.a for compatibility of I and Q

leases.

To illustrate the use of I and Q leases, consider the two sessions shown in Figure 4.2.

Session 1 is modified in two ways. First, Step 1.3 is replaced with a request for a Q lease.

Second, a new step, Step 1.5, is added to delete the impacted key and release the Q lease.

With these changes and the compatibility matrix of Table 4.7.a, Step 2.1 of Session 2 that

observes a KVS miss must obtain an I lease on the quarantined key. The KVS notifies it to

back off and try again, pushing this step to succeed once Session 1 deletes its referenced key

and releases its Q lease. This prevents Session 2 from computing and inserting a stale value.

If Step 2.1 of Session 2 observes a KVS hit then it proceeds to consume the produced

value. This satisfies the freshness property because Session 1 has not finished as yet. This

highlights the fact that the freshness property is at the granularity of sessions (and not

RDBMS transactions). For example, there is a window of time between when a transac-

3In a serial schedule, the sessions performing the reads appear before the one holding the Q lease.

42

www.manaraa.com

4.7.a. Invalidate

4.7.b. Refresh

Table 4.7: Compatibility matrices of I/Q leases.

tion commits to the time it deletes its impacted key from the KVS and releases its Q lease.

During this time, another session may read the value of this key. This session is re-ordered

to have occurred prior to the one that updates the RDBMS. Hence,the serial schedule is at

the granularity of sessions and satisfies the freshness property.

Acquiring Q leases as a part of a transaction and its subsequent release after the transac-

tion commits is similar to two phase locking [56, 39, 71] and provides strong consistency.

43

www.manaraa.com

Figure 4.4: CADBMS results in dirty reads with refresh when an impacted key-value pair is
updated prior to transaction commit.

4.2.3 Refresh

In addition to the race conditions of Section 4.2.2, the refresh technique suffers from un-

desirable race conditions attributed to its R-M-W operation. This section presents these

race conditions and how they violate the freshness property. Subsequently, Section 4.2.3

describes the use of I and Q leases to prevent these race conditions.

Problem definition

An atomic implementation of R-M-W must maintain the value (vold) observed by the R

operation for the referenced key, modifyvold in its memory to compute a new value (vnew),

and implement W using an atomic KVS compare-and-swap (cas).When used in combination

with a transaction processing RDBMS, the writing ofvnew must happen after the transaction

commits. Otherwise, the CADBMS solution may suffer from dirtyreads. This is shown

in Figure 4.4 with Session 1 writing avnew in the RDBMS that is consumed by Session

2. Subsequently, the RDBMS aborts the transaction that constitutes Session 1 (due to a

deadlock), causing Session 2 to observe a value that should not have existed. This violates the

freshness property as Session 2 did not observe the latest state that completed successfully.

Another challenge of R-M-W is how to produce the same serial schedule with both the

RDBMS and the KVS. In their simplest form, race conditions between two concurrent ses-

sions,S1 andS2, update the RDBMS in a manner that realizes one serial order (S1 followed

by S2) and observe a different serial order from the KVS (S2 followed byS1). This may

violate the freshness property because a subsequent KVS read may no longer be a function

of the RDB.

It is possible for two sessions to update two different rows of the RDB and conflict

44

www.manaraa.com

Figure 4.5: Two logical operations race with one another to update the RDBMS correctly
only to result in a KVS state that violates the freshness property.

by referencing the same key-value pair in the KVS. This is because the KVS values are

not normalized and may glue data from different rows together. Hence, two sessions may

simultaneously update two different rows of two different tables that impact the same key.

Use of cas to implement R-M-W accommodates associative operations such as increment

and decrement of a field. Otherwise, it is possible to violatethe freshness property.

To illustrate, consider the concurrent executions of Sessions 1 and 2,S1 andS2, in Fig-

ure 4.5. The cas of Step 2.5 fails when the value written by Step 1.5 is different than the one

S2 read in Step 2.4. This causesS2 to repeat its R-M-W to update the KVS. This results in

an inconsistency window that enables another session to consume a value that violates the

freshness property.

With Figure 4.5, it is possible to re-arrange the R-M-W ofS1 to occur afterS2, i.e., 2.4

and 2.5 to occurs prior to 1.4 and 1.5. In this case, both cas ofS1 andS2 succeeds. However,

their serial order as reflected in the RDBMS is not the same. Thisproduces the correct

key-value ifS1 andS2 either manipulate different fields of a value (e.g.,S1 increments the

number of friends whileS2 decrements the number of pending friends) or are associative

(e.g., orS1 increments the number of friends whileS2 decrements it, see Invite Friend and

Confirm Friend implementation of Table 4.6). Otherwise, the next KVS read that references

the produced key-value pair violates the freshness property as it does not reflect the latest

RDB state.

Solution

We use the Q lease to prevent the race condition described in the problem definition by

implementing the cas command as two separate commands:

45

www.manaraa.com

1. Quarantine-and-Compare, QaC(key,vold), acquires a Q lease on the referenced key

from the server. In addition, the server must verify that thecurrent value of the key

equalsvold. If both conditions are satisfied then the server grants the Qlease and

returns a token to the requester. Otherwise, the server returns an abort message. In

this case, the requesting session must release all its leases, roll back any RDBMS

transaction that it might have initiated (see below), back off for some time, and re-try

its execution.

2. Swap-and-Release, SaR(key,vnew), changes the current value of the specified key with

the new value,vnew, and releases the Q lease on the key.

The QaC implements the compatibility matrix of Table 4.7b which aborts a session request-

ing a Q lease for a key-value pair with an existing Q lease. This is because the serial order of

these two sessions in the RDBMS is not known to the KVS. By aborting and restarting the

requesting session, the KVS serializes this session after the one holding the Q lease.

A session must issue the QaC command for each key that its intends to R-M-W. Should

the KVS respond with abort for a QaC command, the session mustrelease all its leases in

order to avoid the possibility of deadlocks. To illustrate,consider Session 1 (S1) acquiring

a Q lease on data item D1 and observing a conflict with Session 2(S2) when acquiring a Q

lease on data item D2. IfS2 attempts to acquire a Q lease on D1 then it will conflict with

S1. If S1 (S2) retries acquiring a lease on D2 (D1) repeatedly, it will encounter a conflict

indefinitely, resulting in a deadlock. By requiring each session to release all its leases and

try again after a random time out period, the IQ framework becomes deadlock free.

One may perform the QaC calls either prior to the start of the RDBMS transaction or as

a part of the RDBMS transaction. Once the transaction commits,the session must issue SaR

for each impacted key with its new value. This updates the value in the KVS and releases

the Q lease on the key.

Consider the two alternative possibilities to issue the QaC command. When QaC is

issued prior to the start of the transaction and the KVS returns an abort message, then the

session must release all its leases, back off for some time and re-try its execution. When

QaC is issued as a part of the RDBMS transaction and the KVS returns an abort message,

the session must abort the in-progress transaction, back off, re-start the transaction, read

the impacted key, modify its value, and issue QaC for the key.Section 4.2.5 provides a

quantitative comparison of these two alternatives. Surprisingly, they provide comparable

46

www.manaraa.com

Figure 4.6: The RDBMS transaction of Session 2 is aborted, rolled back, and retried because
its QaC requests a Q lease that conflicts with the existing Q lease of Session 1.

performance because the one that performs more work resultsin fewer aborts.

The IQ framework avoids the dirty read of Figure 4.4 by requiring Session 1 to update a

key-value pair (using SaR) after its RDBMS transaction commits.

Figure 4.6 shows how the sessions of Figure 4.5 are extended with the QaC and SaR

commands. In this figure, the sessions are implemented to issue their QaC as a part of their

RDBMS transaction. In Step 2.5, once Session 2 issues its QaC call, the KVS detects its

conflict with that of Session 1 as they reference the same key.Since Session 1 issued its

QaC earlier and was granted the Q lease, the KVS returns an abort message to Session 2. In

response, Session 2 aborts its RDBMS transaction (Step 2.6) and tries again.

Note that our proposed use of Q leases resembles two phase locking as it requires a

session to issue all its QaC calls prior to the RDBMS transaction commit and all its SaR

invocations after transaction commit.

4.2.4 An Implementation

This section details an implementation of the server and theclient components of a KVS that

realizes the I/Q leases of Section 4.2.3. These are an extended version of the Twitter mem-

cached versions 2.5.3 [68] and Whalin memcached client version 2.6.1 [86], respectively.

We conclude with a description of changes to implement the invalidate technique. A unique

feature of our implementation is that it supports those applications that employ a hybrid of

invalidate and refresh techniques for different keys simultaneously.

47

www.manaraa.com

Client

We modified the Whalin memcached client version 2.6.1 [86] to support the I/Q leases of

Section 4.2.3 by providing the following four new commands for use by the programmer:

• QaC(key,vold): Provides the QaC interface of the refresh technique per specification

of Section 4.2.3. This interface issues messages to the KVS server that implements its

functionality, see the Server description of Section 4.2.4.

• SaR(key,vnew): Provides the SaR interface of the refresh technique per specification

of Section 4.2.3. Similar to QaC, this interface issues messages to the KVS server that

implements its functionality, see the Server description of Section 4.2.4.

• Q(key): sends a message to the KVS server to obtain a Q lease onits referenced

key. This command is used to implement strong consistency with invalidate, see Sec-

tion 4.2.2. (The delete command purges a key and releases itsQ lease, see the Server

description of Section 4.2.4.)

• GenID(): Returns a unique Transaction Identifier(TID) to identify the KVS delete

operations performed by RDBMS triggers4 that implement invalidate. This unique

identifier might be generated using either a Java UUID or by a call to the KVS.

We assume a session instantiates a Whalin connection with theKVS and uses it during

its life time. This connection is used with both QaC and SaR invocations. It maintains the

KVS provided tokens5 corresponding to a lease on a key. Once the SaR is issued for the

key, the client identifies the token for the key and provides it to the server to release the

corresponding Q lease. Thus, tokens are transparent to the application software developer.

Table 4.8 shows two alternative ways that one may implement the “Invite Friend” session of

Table 4.6.a, see Section 4.2.5 for details.

Server

The server is designed to support both invalidate and refresh simultaneously. We imple-

mented this design by extending the Twitter memcached versions 2.5.3 [6] to implement the

following commands:

4Triggers execute as a part of the transaction that invokes them.
5This is also true with I leases (where the client implements back off seamlessly).

48

www.manaraa.com

1. Q(key, value): Returns a token pertaining to the Q lease acquired by the server on

the specified key. The implementation checks to ensure the provided value matches

the existing value for the key. Otherwise, no lease is granted and the returned token

instructs the requester to roll back its RDBMS transaction andrestart its session per

specifications of Section 4.2.3. This command is used to implement the QaC(key,vold)

command of the client.

2. Quarantine-and-Register, QaReg(TID, keys): Acquires a Q lease on each of the speci-

fied keys and maintains a key=TID with its value set to the specified list of keys. This

command is used by the invalidate technique (see Section 4.2.4) and implements the

compatibility Table 4.7.a. Should one of the acquired Q leases expire for TID, the

KVS deletes that key.

3. Release(key, token): Employs the key and token to identifya pending lease and re-

moves it. If the token is not valid then the release command isignored.

4. Set(key,vnew, token,vold): Employs the compare-and-swap feature of the KVS to swap

the value of the referenced key with the new one as long as the current value of the

key equalsvold and the provided token is valid. If the token is not valid thenthe lease

has expired and the server (1) deletes the existing key-value pair, (2) adjusts the time

to live of the leases based on a 60 second sliding window of response times.

5. Get(key): Returns the value for the referenced key with a hit. Otherwise, the server

acquires an I lease on the referenced key and returns a token for this key.

6. Delete-and-Release, DaR(TID): Retrieves the valuev where key=TID. For each string

token k inv, DaR deletes the corresponding key=k from the KVS, and releases the

lease on k. This command is used to implement the invalidate technique, see Sec-

tion 4.2.4.

The server is able to support both invalidate and refresh mode of key-value maintenance

because different commands are used to implement how the Q leases is used with each.

The software for each implements the corresponding elementof the compatibility table of

Table 4.7.

Note that it is acceptable for the KVS to grant a Q lease for a key to one session (S2)

that uses invalidate while another session (S1) holds a Q lease on the same key and employs

49

www.manaraa.com

Figure 4.7: Expired leases cause refresh to produce stale data.

the refresh technique. This is becauseS2 will delete its referenced key (due to its use of

invalidate), preventing a violation of the freshness property.

KVS using Invalidation

As detailed in the Server description of this section, the server implements commands for

both invalidate and refresh. To implement the invalidate technique using RDBMS triggers,

we provide a dynamic link library that exposes the Quarantine-and-Register, QaReg(TID,

keys), KVS command. Before executing an RDBMS write operation,the application first

calls GenID() to obtain a unique identifier (TID). When a trigger computes the set of keys

impacted by the proposed update to the RDB, it invokes QaReg using the TID along with

the set of keys. The TID can be passed to the trigger through a session variable (e.g session

context information in the Microsoft SQL Server [61] or a per-session package in Oracle

11g [46]). The server maintains a key=TID whose value contains the list of keys identified

by the trigger. When a session commits a transaction, it issues a DaR(TID) to the KVS to

delete the keys associated with TID from the KVS and release their Q leases.

Life Time of a Lease

With refresh, the life time of a lease is important because itimpacts the strong consistency

guarantee of the IQ framework. In particular, when a KVS write references a Q lease token

that is no longer valid, the current implementation assumesthe lease has expired and delete

the key-value pair. Even with this in place, an expired leasemay produce stale data for some

time. One such a possibility is shown in Figure 4.7. Session 1(S1) is delayed in a manner

50

www.manaraa.com

that it writes its value after a significant delay from when its Q lease expires in Step 1.4.

During this time, Session 2 (S2) is able to acquire its Q lease and observe a time out as well.

WhenS2 issues its SaR, the KVS deletes its referenced key-value pairbecause its token fails

to identify a valid lease. Now, a third session (S3) references the same key, observes a KVS

miss, and computes a new value that it inserts in the KVS afterS1 commits its transaction.

This provides for an inconsistency window where a KVS read violates the freshness property.

One approach to solve the above is to set the life time of a lease to a high value. (Facebook

suggests 10 seconds for its leases [62].) Moreover, the KVS may adjust the life time of leases

by monitoring the delay from when it grants a lease to the timethat a KVS write references

the lease. One such a technique is detailed and evaluated in [36]. The basic idea is to

maintain the maximum observed delay for a moving window of time, say 60 seconds, and

multiply this by some inflation value (say 2) and use it as the life time of the lease. We refer

the interested reader to [36] for details.

4.2.5 Evaluation

This section employs the BG social networking benchmark [12]to evaluate the implementa-

tion of Section 4.2.4. The description of BG was presented in Section 5.7.

Client Designs

As detailed in Section 4.2.3, one may implement clients in two alternative ways. Table 4.8

shows these two alternatives for the Invite Friend action. This section quantifies their trade-

off.

The first implementation invokes the read, modify and QaC commands of KVS (in sup-

port of R-M-W) prior to starting the RDBMS transaction. Hence, ifthe QaC fails then no

RDBMS roll-back is required. The session simply backs off, re-tries the read, modification

and QaC until it succeeds. A draw back of this technique is that, once QaC succeeds, leases

are held for the duration of time the RDBMS performs its modify/write operation.

The second implementation applies the read, modify and QaC actions after the RDBMS

modify/write operation and prior to the commit point of the transaction. This reduces the

duration of Q leases in the KVS. However, it increases the complexity of the software for

two reasons. First, when the QaC command of the KVS fails thenthe RDBMS transaction

must be aborted. Second, the developer must be aware of the transaction semantics and its

51

www.manaraa.com

4.8a. KVS operations prior to RDBMS transaction 4.8b. KVS operations as a part of transaction

Table 4.8: Two alternative implementations of the Invite Friend session of Figure 4.6.a using
QaC and SaR commands.

QaC calls QaC calls
prior to prior to

transactionstart transactioncommit
0.1% 2 2
1% 672 197
10% 2,542 1,437

Table 4.9: Number of rejected write leases (QaC calls) with two client implementations of
Section 4.2.4.

interaction with the modification proposed for a key-value pair. In particular, a KVS read that

observes a miss may query the RDBMS to observe the transactional changes and compute

a value. If the modification to the value is idempotent then applying it to the retrieved

value is acceptable. However, if the modification is not idempotent, e.g., increments the

number of pending friends as shown in Table 4.6.a, then the correctness of software might

be compromised by applying the modification to the key twice.

One approach to support the above is for the developer to author additional software to

differentiate between a KVS read that observes a miss or a hit. Another possibility is to

employ multiple RDBMS connections and use a different connection to handle KVS reads

that observe a miss. This causes the query issued to not observe the updates proposed by

the transaction, avoiding the complexity associated with differentiate between a read that

observes a KVS hit or a miss. We implemented this second approach.

Table 4.9 shows the number of failed QaC invocations with thealternative client imple-

mentations. Performing KVS actions prior to transaction start results in more failures due

52

www.manaraa.com

10K members 100K members
Twemcache IQ Twemcache IQ

0.1% 36%/2.8% 0%/0% 15%/0.7% 0%/0%
1% 37%/1.1% 0%/0% 15%/0.01% 0%/0%
10% 10%/0.5% 0%/0% 5%/0% 0%/0%

Table 4.10: Percentage of unpredictable data using refresh/invalidate with Twemcache by
itself and Twemcache extended with the I/Q leases.

to Q lease collisions for the same key. However, it provides aperformance identical to its

alternative because it does not roll-back transactions andthe number of rejected write leases

is a very small percentage of the total number of performed operations.

Performance Results

This section compares the performance of two variants of Twemcache:

• Twemcache extended with read leases of [62], labeled Twemcache.

• Twemcache extended with I/Q leases using the implementation of Section 4.2.4, la-

beled IQ.

Table 4.10 shows the amount of stale data produced by these two alternatives for two different

social graphs consisting of 10K and 100K members. With both social graphs, the amount

of stale data decreases as a function of the percentage of write actions. This is because,

once stale data is inserted in the KVS, it is removed only by another write action. A higher

frequency of write action increases the likelihood of stalekey-value pairs being restored to

their correct value.

The amount of stale data observed with Twemcache is significantly lower with invalidate

when compared with refresh. There are two reasons for this. First, invalidate does not use

the R-M-W operation. Second, Twemcache is configured with read leases of [62].

It is interesting to note that the percentage of stale reads is lower with the large social

graph when compared with the small social graph. This is because the assumed Zipfian

mean (0.27) directs 80% of the actions to 20% of the members. The number of members is

ten times higher with the large social graph, reducing the likelihood of read and write actions

competing for the same data items.

53

www.manaraa.com

10K members 100K members
Twemcache IQ Twemcache IQ

0.1% 56,792 56,783 57,032 57,019
1% 45,186 44,844 13,898 12,603
10% 39,912 37,518 1,907 1,911

Table 4.11: SoAR using refresh with Twemcache by itself and Twemcache extended with
the I/Q leases.

The SoAR of the invalidation technique is identical for Twemcache and IQ (not shown)

because both implementation require the RDBMS triggers to issue the same keys. Hence,

both issue the same number of calls to the KVS. The only incurred overhead with IQ is the

final call by the session to delete the impacted keys, DaR. Thishas no impact on the observed

SoAR because the CPU of the KVS server is less than 50% utilized.

Table 4.11 shows the SoAR of the refresh technique with Twemcache by itself and once

extended with the I/Q leases. With the small social graph, the network bandwidth (3 Gbps)

of the Twemcache becomes fully utilized to dictate the observed SoAR. This explains why

the two alternative deployments provide a comparable SoAR rating.

With the large social graph and the 0.1% mix of write actions,the network bandwidth

of Twemcache remains fully utilized, causing the two variants of Twemcache to provide a

comparable performance. With the 1% and 10% mix of write actions, the disk of the server

hosting the RDBMS becomes fully utilized with a sustained queue of requests, dictating the

observed SoAR. This is due to the large size of the 100K social graph that no longer fits in

the memory of the RDBMS server. The difference in SoAR of IQ and Twemcache is lower

than 10% and we attribute this to experimental noise.

54

www.manaraa.com

Chapter 5

Cache Consistency Techniques

When a data object, such as a HTML page, is generated and storedin the cache, it exists as a

separate copy of the data outside of the origin server or RDBMS.If the data on the RDBMS

were to change, a system will serve incorrect data if it retrieves the old cached copy rather

than the up-to-date version from the database. In order to prevent the cache from becoming

inconsistent with the RDBMS, various cache consistency mechanisms are used to ensure

that a RDBMS change occurs on the RDBMS is propagated the cache. These mechanisms

differ in their implementation, resource requirements, runtime performance as well as their

consistency guarantees.

A cache entry is considered stale or inconsistent with the RDBMS if a read operation

from the cache produces different results than from querying the RDBMS. When an update

transaction to the RDBMS changes the state of the data, if the cache continues to hold the

obsolete copy of the data as a valid cache entry, any subsequent reads of the cached data

will produce stale results. The amount of time elapsed from the update to the moment when

the infrastructure is guaranteed to produce the updated value is termed the inconsistency

window [84].

The various consistency mechanisms can be classified into two broad categories: non-

transparent consistency techniques and transparent consistency techniques. Non-transparent

consistency techniques require explicit implementation by a human application developer or

database administrator with knowledge of specific application logic. The developer may be

required to identify the relationship between the cached data and possible update operations

which change the state of that data. On the other hand, transparent consistency techniques

maintain the cache consistent without requiring additional input from the developer. These

55

www.manaraa.com

techniques require no prior knowledge of the application workload and can be used with no

change to application software. The characteristics of each class of techniques are detailed

in the following sections.

5.1 Non-transparent Consistency Techniques

The non-transparent class of consistency techniques refers to techniques that require the

application developer to manually author software to maintain the cache consistent with the

database. An application developer performs global reasoning between the cache entries and

their database counterparts to author custom invalidationsoftware that accompanies update

operations and functions to maintain the cache consistent with the database.

The benefit of these approaches is that the solution is customtailored for the application.

However, these approaches tend to be time-consuming to implement and are error-prone.

Software bugs can occur in the consistency maintenance codedue to programmer error or

as a result of misinterpreting application logic or requirements. As the application evolves,

the application developer must maintain the consistency logic up-to-date which opens the

possibility for errors and software bugs once again.

The following sections describe each technique and their requirements.

5.1.1 Application Developer Consistency (ADC)

A human programmer (or database administrator) authors application specific software to

update the cache. Typically, this software is an extension of the code where the application

updates the database. With the example of the user profile page, the developer may extend

the application software to update the user’s profile with the appropriate commands to either

update the cache or delete the cached key-data pair. With thelatter, a subsequent cache look

up observes a miss and invokes the application logic to compute the new key-data pair and

inserts it into the cache.

5.1.2 RDBMS Trigger (Trig) Driven

The programmer extends the RDBMS with triggers [11] that detect changes to the underly-

ing tables, compute the impacted key(s) and issue delete command(s) to the cache manager

to purge these keys. For example, a key for a user’s profile page might be stored in the cache

56

www.manaraa.com

as the word “Profile” combined with a unique identification number assigned to the user,

eg. Profile-172. This knowledge of the key naming convention is used when authoring the

triggers as the triggers have to know how to generate the appropriate keys before issuing

the delete to the cache. An update that occurs to the RDBMS will cause the trigger to fire

and execute its body. The trigger has access to information about the row or rows that were

changed and can extract information such as the value of a column in the changed row in

order to compute the key.

For example, a user with ID172 changes their profile which the application translates

into an update on theUserstable. The update causes the trigger on theUserstable to fire and

extract the value of the ID column from changed row,172. The trigger then concatenates

this value with the word “Profile” to generate the keyProfile-172and issue the delete for that

key to the cache.

5.1.3 Synthetic

Alternatively, a Time-To-Live(TTL) for cache entries can be used to provide weaker consis-

tency guarantees. Some applications do not have strict consistency requirements, where it

is acceptable for users to witness stale data some of the time. This technique differs from

the previous two approaches in that updates to the RDBMS do not actively trigger invalida-

tions or updates of the corresponding cache entry. Instead,the cache entries are oblivious of

changes made to the underlying data and depend on the TTL to beindependently invalidated.

The TTL dictates the duration a cache entry is valid once it has been inserted into the

cache. The developer extends the application to provide a Time-To-Live(TTL) for each key-

data pair. The cache manager invalidates a key-data pair once its TTL expires. Larger values

of TTL mean that the system holds cache entries longer, increasing the cache hit rate but also

increasing the rate of stale reads. Smaller values of TTL reduce the rate of stale reads but as a

result, reduce the cache hit rate and force the application to continually repopulate the cache

for frequently read entries. The developer has to understand the nature of the application

and its access patterns in order to estimate an optimum valueof TTL for each key. However,

this solution tends to be inflexible in the face of changing access patterns and unpredictable

workloads.

57

www.manaraa.com

5.2 Transparent Consistency Techniques

Transparent consistency techniques differ from non-transparent techniques in that the consis-

tency of the cache is maintained automatically without special input by the developer. These

techniques rely on two general mechanisms, (i) cues from theapplication to indicate the

data dependencies of cached entries and (ii) notification from the RDBMS when a relevant

change is detected. The cues that can be used are readily available: the SQL queries which

are being issued by the application to the RDBMS. By intercepting these queries through a

RDBMS client wrapper, the system automatically identifies these queries without additional

changes required to the application software. The framework keeps track of these dependen-

cies in order to determine which cache entries are affected whenever a change is detected in

the database.

Two approaches were considered for the implementation of a transparent caching layer.

First, the Query Change Notification(QCN) approach utilizes technology recently introduced

in commercial RDBMS, described in Section 5.3. Evaluation of the system with QCN re-

vealed limitations in the it’s ability to scale. The time to register a query with the RDBMS

was prohibitively expensive and there was a limit to the number of queries that could be reg-

istered with the RDBMS (hundreds). With time, optimization ofthe QCN mechanisms and

improvements to the interfaces may overcome these limitations and make the QCN approach

more viable. However, its present implementation does not make it suitable for supporting

scalable transparent caching in a CADBMS.

The second approach is to dynamically author triggers that detect the changes to the

data and send notifications to the cache. It mitigates the problems observed by the QCN

approach by registering queries as templates rather than individual queries. Queries with the

same structure but different values are considered as different instances of a parameterized

template and in a typical application, there are only dozensof such query templates. This

approach is described in Section 5.4 and was determined to bethe most suitable approach to

enabling transparent caching.

5.3 Query Change Notification (QCN)

Query Change Notification (QCN) is a mechanism where queries can be registered by an

application with the RDBMS. The RDBMS provides a callback interface where the appli-

58

www.manaraa.com

cation can receive notifications when the RDBMS detects that the results of the registered

query has changed. The application can then process the notification to extract information

regarding what has changed and react accordingly. In the context of a cache, this feature

becomes very useful in maintaining the consistency of the cache with the RDBMS. Cache

entries which were generated based on queries to the RDBMS can be invalidated if the sys-

tem detects that the underlying data has changed. In order todo this, the cache has to be

aware of and maintain the dependencies between queries and cache entries. The process to

determine these dependencies is described in further detail in Section 5.5.1, as part of the

RDBMS client wrapper.

For example, say the cache contains a key value pair,ki-di, where the key,ki, is “Profile-

172” and the value is the HTML profile page for user with the ID172. This profile page was

generated by issuing queries to the RDBMS, one of which is:

SELECT occupation

FROM users

WHERE userid = 172;

The cache has registered the query with the database QCN system and mapped the de-

pendency between the query and the key“Profile-172” .

When the following update occurs:

UPDATE users

SET occupation = ‘student’

WHERE userid = 172;

the RDBMS will detect that the result set for the registered query is affected. A notifi-

cation is generated as a part of the update transaction and issent to the cache as soon as it

occurs, though possibly with some queuing delay. When the notification is received by the

cache, it looks up the mapping between the affected query andcache entries and finds that

“Profile-172” is dependent on the affected query. The cache entry is invalidated, causing a

subsequent lookup for“Profile-172” to observe a cache miss.

Thus, when data is modified in the RDBMS, the change is immediately reflected in the

cache as a result of the invalidation of dependent cache entries. The following read that

59

www.manaraa.com

observes the cache miss winds up reading the latest value from the RDBMS and repopulates

the cache with the up-to-date value of the entry.

QCN was first seen in Oracle under version 10g R2 as Database Change Notification

[63]. It was later enhanced and re-branded as Continuous Query Notification (CQN) in

Oracle 11g [64], the latest release. Similarly, Microsoft first introduced Change Notification

in SQL Server in the 2005 version [57] and continues to support it in SQL Server 2012 [58],

the latest release.

5.3.1 Query Registration And Notification

Queries are registered with the RDBMS by the cache server. The exact interface for this

operation differs between the two RDBMS implementations of QCNbut they share the fun-

damental concepts. The RDBMS takes a query string from an application and registers it

for change notification. Multiple queries can be registeredthis way. When a change occurs,

the RDBMS notifies the application and provides information that identifies which of the

registered queries was actually affected. Thus, the same notification handling software can

be used for all the different query registrations.

The rest of this section describes in detail how this is done with Oracle’s CQN system.

Oracle provides a C/C++ client library to communicate with theRDBMS. Through this

interface, the cache server application first obtains a subscription handle and associates with

it a callback function in the application. This callback function is called when a change

occurs and is used to process the notification. Using the subscription handle, the cache

application specifies a query to the RDBMS for registration with CQN. If this operation

is successful, the RDBMS will return a unique identifier for theregistered query, an 8 byte

integer called aQueryID. If the application attempts to register the same exact query multiple

times, the RDBMS will realize that it is a duplicate and return the sameQueryID.

As mentioned earlier, the COSAR-CQN framework keeps track the possibly multiple

queries used to generate a key-value pair. Each of these queries have to be registered using

the mechanism described above. Each unique registration generates a newQueryID, which

the framework associates with the key-value pair.

When a change occurs in the RDBMS that affects one of these registered queries, a

notification is sent by calling the callback function. The notification contains one or more

60

www.manaraa.com

SELECT m.userid, m.email, m.profileImage
FROM Members m, Frds f
WHERE f.frdID1=1 and m.userid=f.frdID2

SELECT m.userid, m.email, m.profileImage
FROM Members m, Frds f
WHERE f.frdID1=? and m.userid=f.frdID2

5.1.a) Query instance 5.1.b) Query template

Figure 5.1: A query instance to retrieve the friends of Member with userid=1 and its corre-
sponding query template.

QueryIDs1 and information about the type of change, the tables that were affected, and

the rows that were affected. Using theseQueryIDs, the cache application can look up and

invalidate all associated key-value pairs. Thus, at this point the cache no longer holds the

stale key-value pair and will force a subsequent lookup for that key to retrieve the up-to-date

copy from the RDBMS and repopulate the cache.

When a query notification is received, one possible action is also to unregister the reg-

istration of the affected query. A reason to do this might be to reduce the number of reg-

istrations that exist in the RDBMS. CQN registrations impose some overhead on RDBMS

update, insert and delete transactions because the system has to check these registrations

every time while executing the transaction. However, the registration and unregistration op-

erations themselves are expensive and should be avoided while the system is under heavy

load. The decision of when to register or unregister a query depends on the frequency of

access of the cache entry and modification of the data, as wellas the system load.

5.4 Dynamically Generated Triggers (SQLTrig)

A disadvantage of the Trig approach described in Section 5.1.2 is that the application devel-

oper or database administrator has to manually author and maintain the trigger code used to

invalidate the cache. This section describes a novel transparent KVS consistency technique

named SQL Query To Trigger translation,SQLTrigfor short, that overcomes the limitation

of that model.

The input to the SQLTrig’s query to translator is a queryinstanceissued by an applica-

tion. The translator consists of the following two components:

1. A query template generator, QTGen: The input to this component is the query instance

and its output is a query template, and

1In some cases, multiple notifications are bundled into one call.

61

www.manaraa.com

2. A trigger generator, TrigGen: Its input is a query template and its output is a set of

triggers.

In the following, we start by describing what is a trigger. Next, we describe QTGen and

TrigGen in turn.

A trigger is a procedure registered for execution with the RDBMS. It is specified on

a table, say R, to execute when a row is either inserted in R, deleted from R, or updated.

In essence, TrigGen authors software on the fly per query template. The execution of these

triggers uses the inserted/deleted/updated row to computethose query instances whose result

sets have changed and to invalidate (delete) them from the KVS. A trigger defined on a Table

R may not query Table R because this table is in the process of being updated. TrigGen re-

spects this constraint for all its authored triggers. It assumes triggers execute synchronously,

returning an error code when it fails to delete a key-value pair (due to intermittent network

connectivity). At run time, such failures cause the RDBMS transaction to abort, leaving the

KVS and the RDBMS consistent with one another.

To compute the query template of a query instance, QTGen parses the SQL query to iden-

tify its selection predicates. These predicates appears inthe qualification list (where clause)

of the query and might be connected using Boolean logic (and, or, not). They compare an at-

tribute of a table (e.g. Member.id) with a constant (e.g. 47645) using a comparison operator

(=, ≤, ≥, <, >, 6=). QTGen replaces the constants with a wild card to compute the query

template. Figure 5.1 shows a query instance and its corresponding query template produced

by QTGen.

To translate a parsed query templates into triggers, TrigGen identifies the following five

types of SQL queries with a “where” clause consisting of:

1. One exact-match selection2 predicate: TrigGen authors triggers that produce the query

instance whose result has changed. See Section 5.4.1 for details.

2. Several exact-match selection predicates connected using the logicaland: Identical to

the discussion of queries with one exact-match selection predicate, see Section 5.4.1

for details.
2An exact match is a comparison of an indexed tuple variable with a constant using an equality predicate,

e.g., userid=“654”.

62

www.manaraa.com

3. One or more join predicates and one or more exact-match selection3 predicates con-

nected using the logicaland: TrigGen authors triggers that generate the query instance

(key) whose result (value) has changed. The authored trigger may query one or more

of the tables in the “from” clause of the query. A trigger doesnot query its own table

that is in the process of being modified. See Section 5.4.2 fordetails.

4. One or more selection and join predicates connected usingthe logicalor: TrigGen

uses Boolean logic to break the original query instance into query fragments, each

with a distinct where clause resembling one of the previous four cases. Conceptually,

the union of the result of the query fragments computes the result of the original query.

TrigGen requires the KVS to maintain a hash table that maps each query fragment to

the original query (key). Next, it authors triggers to generate a query fragment based

on the provided four classifications. When an RDBMS update invokes a trigger, it

invokes a KVS method that consumes the query fragment to probe the hash table to

identify the key (query instance with the logicalor) whose value (result set) must be

invalidated.

5. One of the previous four cases with the “select” clause of the query using an aggre-

gate such as “count” or “sum”: TrigGen employs the translation process of the above

classification with one difference. Triggers are authored intelligently based on the ag-

gregate. For example, a query that counts the number of rows should not be invalidated

if one record of its referenced table is updated.

Below, we provide details of how TrigGen supports each class of queries in turn.

5.4.1 Exact match selection predicates

Consider the following query with a qualification list consisting of one exact-match selection

predicate:

SELECT attr1, attr2, ..., attrn

FROM R

WHERE attrn+1=C1

3Recall that queries purely with join predicates are not appropriate for use with SQLTrig because they are
decision support style queries. SQLTrig targets query instances that are selective and large in number.

63

www.manaraa.com

Its relational algebra equivalent is:πattr1,...,attrn(σattrn+1=C1
(R)). The translation process to

generate triggers is as follows. With either an insertion ordeletion of a rowr, the trigger is

authored to embody the query template and replace the wild card with the value of attrn+1

of the impacted row r, i.e., r.attrn+1. The resulting query instance is the key whose value has

changed. The KVS deletes this key.

With an update, TrigGen authors the trigger to execute before update to a rowr of Table

R. Thus, the trigger may access the attribute value of the old and new version of rowr. If

r.attrn+1 is being modified fromC1 to Cnew then the result of two different query instances

have changed. TrigGen authors an “If(C1 != Cnew)/Else” statement to detect this by compar-

ing the old (C1) with the new value (Cnew). When these two values are not equal, additional

code is provided to generate two query instances by replacing the wild card of the query

template with two different values: old and new values of r.attrn+1, i.e.,C1 andCnew. The

KVS deletes both keys.

When r.attrn+1 is not modified, at least one of the attributes in the projection list, i.e.,

r.attr1, r.attr2, ..., r.attrn, must be modified in order for the trigger to identify an impacted

query (key). This is constructed by replacing the wild card of the query template with the

value of r.attrn+1.

In its most general form, the query’s qualification list (where clause) may consist of

k predicates connected using the logicaland, attrn+1=C1 AND attrn+2=C2 AND ... AND

attrn+k = Ck. Extension of the insert and delete trigger authoring process is trivial: k

wild cards of the query template are replaced with the respective attribute values (attrn+1

to attrn+k) of the impacted rowr. With an update, every time the value of one or more of the

k attributes (attrn+1 to attrn+k) of a rowr changes then two query instances are identified for

invalidation. They are constructed by replacing the wild card of the query template with the

old and new value of thek attributes of the impacted rowr. KVS deletes these keys.

With a query instance converted into its algebraic equivalent, TrigGen performs simple

string manipulations (change to uppercase and removal of extra spaces) and sorts the attribute

names referenced by its project (and select operator) priorto constructing a query template

and authoring triggers. This ensures the same query that is slightly different and issued by

different methods of an application produce identical templates and triggers.

64

www.manaraa.com

5.4.2 Equi-join predicates with one or more exact-match selection pred-

icates

To describe SQLTrig’s authoring of triggers for queries with a join predicate, consider the

following query:

SELECT R.attr1, R.attr2, ..., R.attrn

FROM R, S

WHERE S.attrj=C1 and R.attrn+1=S.attri

where tables R and S might be Members and Frds tables and C1 is the value 1 in Figure 5.1.a.

SQLTrig constructs the algebraic representation of this query: πattr1,...,attrn(σattrj=C1
(S)

✶R.attrn+1=S.attriR). Next, SQLTrig authors two sets of triggers, one for TableR and the

other for TableS. The set of triggers is different for each table due the presence of the exact-

match selection predicate referencing Table S. Both computethe query instance (key) whose

result (value) has changed and should be invalidated. Below,we describe authoring of trig-

gers for each table in turn. Subsequently, we generalize thediscussion for complex “where”

clauses consisting of an arbitrary number of join and exact-match selection predicates.

SQLTrig authors triggers that handle insert and delete of a row s from the table referenced

by a selection predicate (S) as follows. It uses the query template and replaces its wild card

with the value of the attribute referenced by the selection predicate,s.attrj . With an update

of row s, it authors the trigger to replace the wild card with the old and the new value of

s.attrj , identifying two query instances (keys) whose results (values) have changed. The

KVS deletes these keys.

With the table that participates in the join clause and is notreferenced by the selection

predicate, Table R, SQLTrig authors triggers that handle insert and deletion of a rowr as

follows. It authors code to perform an exact-match look up oftableS by transforming the

equi-join predicate to an exact-match lookup: S.attri= r.attrn+1. Note that r.attrn+1 is a

constant asr is a specific row of Table R (in the process of being inserted ordeleted). For

each matching records, the authored trigger employs the value ofs.attri to replace as the

value of the wild card in the query template. This query instance (key) should be invalidated

because its result (value) has changed.

Figure 5.2 shows the pseudo-code for how SQLTrig processes a“where” clause con-

sisting of an arbitrary number of equi-join and exact-matchselection predicates. It groups

predicates based on whether they are equi-join or exact-match selection predicates. Next,

65

www.manaraa.com

1. Let T = Query template of the query instance

2. Let {P} = Selection predicates

3. Let {J} = Join predicates

4. Combine those selection predicates in {P} referencing the same table into one.

5. For each table R referenced by a selection predicate p in {P} do

(a) let A = the attribute referenced by p

(b) Author code to lookup the value of A from the row of R that is being
inserted/deleted/changed and substitute for the wildcard in p

(c) Let {Q} = {P} - p

(d) For each q in Q

i. Author code to use all elements of {J} to lookup the value of attribute
referenced by q, q.attr

(e) Author code to use the values computed in the for loop with {Q} to substitute
for the wildcards in T

(f) Author code to invalidate the resulting query instance

6. {S} = table referenced by the join predicate only

7. For each table s in {S} do

(a) Let {SJ} = All join predicate that reference Table s

(b) Author code to put value for s.attr in all elements of {SJ}

(c) For each sj in {SJ} do

i. Author code to use other elements of {J} to lookup the values of attributes

(d) Author code to use values computed in Step 7(c)i to substitute for the wildcards

(e) Author code to invalidate the resulting query instance

Figure 5.2: Pseudo-code for processing join predicates.

66

www.manaraa.com

Figure 5.3: Parse tree for a query containing an “or” predicate.

it merges the exact match predicate that reference the same table into one. Subsequently, it

generates triggers for those tables referenced by the exactmatch predicates, Step 5. Finally,

it generates triggers for each table referenced by the join predicate, Step 7.

5.4.3 Logical “or” Connectivity

With queries whose “where” clause uses the logicalor connectivity, TrigGen employs the

distributivity property4 of propositional logic to construct several sub-queries. In order to

do so, TrigGen first parses the query and generates a binary tree where the internal nodes

consist of either “and” or “or” nodes and the leaf nodes are the selection or join predicates

(see Figure 5.3 for an example). The algorithm to parse the tree and construct the sub-

queries is described in Algorithm 1. The “where” clause of each sub-query uses the logical

and connectivity and is different for each sub-query. Logically, the union of the results of

these sub-queries computes the same result as the original query.

TrigGen requires the KVS to maintain a hash table that associates each sub-query in-

stance (an intermediate key, IntKey) with the original query instance (key). This hash table

is identified by a unique name and is specific to this query template, i.e., it is popuated by

the large number of instances of this query template. Subsequently, TrigGen employs the

discussions of the previous sections to translate each query into a set of triggers with one

difference. The trigger generates both a sub-query instance (IntKey) and the name of the

hash table for its query template. The KVS uses the hash tablename along with the sub-

query instance (IntKey) to identify the query instance (key) whose result set (value) must be

4Distribution of conjunction (and) over disjunction (or).

67

www.manaraa.com

Algorithm 1 Expands the parse tree and returns a list of all possible combinations of disjunct
predicates.

1: function EXPANDQUERIES(node)
2: if node = Leaf Nodethen
3: return {node.value}
4: end if
5: list← {}
6: if node = “AND” then
7: for left in ExpandQueries(node.LeftChild) do
8: for right in ExpandQueries(node.RightChild) do
9: list← list.append(left+ “ AND ” + right)

10: end for
11: end for
12: else ifnode = “OR” then
13: for left in ExpandQueries(node.LeftChild) do
14: list← list.append(left)
15: end for
16: for right in ExpandQueries(node.RightChild) do
17: list← list.append(right)
18: end for
19: end if
20: return list

21: end function

68

www.manaraa.com

invalidated.

As an example, consider the following query:

SELECT userid

FROM Friends

WHERE status=’2’ AND (userid=’869’ OR friendid=’869’)

Using the distributivity property of propositional logic,TrigGen generates the parse tree

shown in Figure 5.3 and constructs the following two sub-queries:

1. πuserid(σ(status=′2′) and (userid=869)(Friends)), and

2. πuserid(σ(status=′2′) and (friendid=869)(Friends)).

TrigGen directs the KVS to maintain a hash table with a uniquename, say X, that maps these

two query instances (IntKeys) to the original query (key). Next, it uses the discussions of

Section 5.4.1 to author triggers for each sub-query. Once activated, these triggers identify

a sub-query string along with the mapping table X. The KVS probes mapping table X with

the sub-query string (IntKey) to identify the original query (key) whose result set (value) has

been invalidated. In a final step, the KVS deletes this key.

5.4.4 Simple Aggregates

Aggregates such as count are a common query with social networking applications. An

example query is one that counts the number of friends for a given user:

SELECT count(f.friendid)

FROM Friends f

WHERE f.userid=’869’

TrigGen authors triggers by re-writing their target list toeliminate the aggregate. Subse-

quently, it uses the discussions of the previous 3 sections to author triggers. For example,

with the example query, “count(f.friendid)” is replaced with “f.friendid”. With “count(*)”,

the “*” is replaced with the primary key of the referenced table. TrigGen does recognize the

presence of an aggregate and, once the triggers are generated, restores the target list of the

query (key) generated to its original aggregate. This ensures the trigger produces the correct

key for invalidation.

69

www.manaraa.com

With aggregates that have no where clause, e.g., the sum of all values in a column,

TrigGen associates KVS key-value pairs with the name of the reference table and the columns

of interest. It authors triggers to generate the table name concatenated with the referenced

columns as its output. This invalidates key-value pairs with any change involving those col-

umn values on record inserts, deletes and updates. The countaggregate with no qualification

list is a special case where the key-value pair is associatedwith the table name and is invali-

dated at the granularity of a table change. However, only inserts and deletes generate query

instances (keys) as updates do not affect the number of rows.

5.5 SQLTrig Implementation

SQLTrig utilizes the standard JDBC interface to provide the benefits of query result look up

using a Key Value Store (KVS) without requiring either an application rewrite or a re-design

of the database. The design presented here is in the context of a Client-Server architecture,

CS, where the cache manager consists of a client and a server component that communicate

via message passing [4, 5, 31] as described in Chapter 3. Typically, key-value pairs are

partitioned across the KVS server instances. Hence, a key-value invalidation impacts one

server instance. An example KVS system is the widely used memcached [55, 62].

This implementation uses a simple single node CS architecture (see Figure 5.4) and con-

sists of the following:

1. An industrial strength RDBMS named5 SQL-X.

2. A SQLTrig serverrealized by extending the implementation of the IQ framework of

Section 4.2.4 which uses Twitter memcached (Twemcache) Version 2.5.3 [6]. It reg-

isters the SQLTrig client provided triggers with the RDBMS using its Trigger Regis-

tration component, see Item 4. It caches a key-value pair only when its corresponding

triggers have been registered with SQL-X.

3. A SQLTrig clientwith a JDBC interface. It embodies the JDBC driver of SQL-X and

Whalin memcached client version 2.6.1 [86]. This component intercepts SQL queries,

identifies those that can be translated into triggers, and looks up their result set in the

SQLTrig server (described below). With SQLTrig server misses, this component issues

5Due to licensing restrictions, the identity of the RDBMS cannot be disclosed and it is named SQL-X.

70

www.manaraa.com

Figure 5.4: The components comprising the SQLTrig architecture.

the query to the RDBMS to obtain its result set, generate triggers for the query, pro-

vides the query instance and its result set along with the setof triggers to the SQLTrig

Server.

4. A Trigger Registration(TR) module deployed with the SQLTrig server. It uses the

JDBC driver of SQL-X to register triggers with the SQL-X server. The SQLTrig server

uses this module to register triggers provided by the SQLTrig client. SQLTrig server

communicates with TR using synchronous message passing.

The following sections describe SQLTrig client and server components in turn.

5.5.1 SQLTrig Client

The SQLTrig client is a wrapper that provides the JDBC interface of SQL-X for use by the

application. It employs the JDBC driver of SQL-X to issue queries to SQL-X and the Whalin

memcached client version 2.6.1 [86] to issue commands to theSQLTrig Server (extended

Twitter Memcached). The client is previewed to all RDBMS queries and update commands

71

www.manaraa.com

issued by the application including those commands that define transaction boundaries. To

respect the consistency guarantees implemented by the developer, SQLTrig does not materi-

alize key-value pairs pertaining to queries issued as a partof a multi-statement transaction.

With single-statement queries that fall into one of the categories described in Section 5.4,

the client looks up the result set (value) of the query (key) in the SQLTrig server (using its

Whalin client). If the server provides a value, the client deserializes it into an instance of

result set, and provides it to the application for further processing.

When the server reports a cache miss, the client issues the query to the RDBMS to obtain

its result set. Next, it converts the query instance to a query template using QTGen, see Sec-

tion 5.4. It then proceeds to use TrigGen to author triggers for the query template,{Trigs}.

Since authoring triggers is a potentially expensive operation, the client avoids repeating this

process for the same query template by maintaining authoredtriggers locally in a hash table

for future lookup. In order to insert the result set in the SQLTrig server, it invokes SQLT-

SETIK(ki, vi, {Trigs}, {IntKeys}) whereki is a unique identifier for this key-value pair (the

SQL query string itself),vi is the serialized result set obtained from SQL-X,{Trigs} refers

to the set of authored triggers for this query template, and{IntKeys} are the intermediate

keys that the triggers will generate to match this instance of the query template.

Additionally, the SQLTrig client implements the IQ framework of Section 4.2 to provide

strong consistency. In response to the Get (ki), the SQLTrig server returns either the value,

vi, for a hit or grants an I lease forki in the event of a miss. As described in Section 4.2.4,

the token associated with the I lease is maintained seamlessly by the SQLTrig client. The

SQLT-SETIK command above passes this token to the server when attempting to insertki-vi.

The client wrapper also intercepts DML statements6 to implement the IQ framework. Before

executing the DML statement, the client first assigns a Transaction Identifier(TID) that can

be accessed by the trigger body7.

When executing the DML statement, the appropriate trigger isinvoked and passes the

TID along with its generated set of IntKeys to the SQLTrig server using Quarantine-and-

Register-IntKey, SQLT-QAREGIK (TID, IntKey). This is a new command that resembles the

Quarantine-and-Register command of the IQ framework but includes additional handling for

IntKeys. This handling is described in Section 5.5.2. The server may fail to grant the Q lease

6Data Manipulation Language statements are SQL statements used to insert, delete, or update data in the
RDBMS.

7The mechanism for passing the TID to the trigger varies with different RDBMS implementations. For
example, with Oracle, packages [65] can be used to store values visible within the scope of a transaction.

72

www.manaraa.com

if it is unable to allocate memory to store the Q lease, in which case the entire transaction

rolls back and the client can either try to execute the transaction again from the beginning

or abort the transaction altogether. If all Q leases are successfully obtained, the transaction

is committed. The client now issues a Delete-and-Release, DaR (TID), to invalidate all

associated key-value pairs and release any acquired leases.

The technique used to serialize and deserialize (marshall and unmarshall) the result of

SQL queries impacts system performance significantly. Ideally, a marshalling technique

must be fast, efficient and produce the most compact serialized representation. With the

Java programming language, this can be done by marshalling aserializable version of the

JDBC ResultSet class. Since the general Java SQL ResultSet(java.sql.ResultSet) class is not

serializable, it has to be converted into an object that doessupport serialization.

One such method is to employ the CachedRowSet implementation8 (by Sun, now Oracle)

to generate a serializable instance of the query ResultSet class. This instance is populated

with a ResultSet obtained by executing a query. Next, this instance is serialized into an

array of bytes using the Java writeObject call. The resulting array of bytes is stored as

the value portion of a key-value pair in the KVS. It might be compressed to minimize the

memory footprint and network transmission time. When unmarshalling this array of bytes

after reading it from the SQLTrig server, a corresponding Java readObject call is used to

rebuild the original CachedRowSet instance. The Java marshalling and unmarshalling of

objects are expensive because they are designed to handle arbitrarily complex classes.

To avoid this overhead, we implemented a custom marshallingof the ResultSet. It out-

performs the Java marshalling technique because it is awareof the specific structure of the

ResultSet object. It retrieves its number of columns and rowsand stores them as the first

eight bytes of an array. Subsequently, it stores the meta-data information for a column (name,

length, table name, type) and its values for every row, producing a column store represen-

tation. Today, with variable length columns such as varchar, its data is stored as a series

of {length, value} pair. An alternative representation would be to store all{length} values

followed by{value} of the columns. This may produce a more compact representation when

compressing our serialized representation.

We used the YCSB benchmark [29] (Workload C) to compare the generic Java mar-

shalling technique with my implementation. YCSB is configured with one table consist-

8A commercial RDBMS software vendor may provide its own implementation of CachedRowSet as a part
of its JDBC driver, e.g., OracleCachedRowSet. One may use this instead of the generic implementation.

73

www.manaraa.com

SQLTrig Generic
Marshalling Java Marshalling

No With No With
Compression CompressionCompression Compression

Average Size (bytes) 1,536 972 7,671 3,787
Avg Latency (µs) 102 117 317 875

Table 5.1: Marshalling of YCSB Workload C ResultSet with SQLTrig and Java.

ing of ten string columns. Each column is 100 bytes long. The target query retrieves all

columns of a single row. First row of Table 5.1 shows the average size of the resulting ob-

ject with both SQLTrig’s marshalling technique and the generic Java marshalling technique.

The SQLTrig marshalling technique results in representations that are 3 to 4 times smaller

in both compressed and uncompressed format. Moreover, the service time9 to both generate

and compress10 the value is faster with my implementation, see the second row of Table 5.1.

5.5.2 SQLTrig Server

The SQLTrig server is implemented using the C language and extends the implementation

of the IQ framework (see Section 4.2.4) using Twitter’s memcached version 2.5.3, Twem-

cache [6]. The extensions implement the indexing in supportof two new commands: SQLT-

SETIK(ki, vi, {Trigs}, {IntKeys}) and SQLT-QAREGIK(TID, IntKey). Both are per SQL-

Trig client specification, see Section 5.5.1.

The SQLTrig server maintains a hash table of the triggers that have been registered with

the RDBMS successfully. When the client issues the SQLT-SETIK command, the SQLTrig

server determines if each trigger in the set{Trigs} is found in the hash table of the registered

triggers. Next, it checks if all intermediate keys in the set{IntKeys} were already associated

with the provided keyki. If not, it associates eachIntKeyi with ki by storing it as a key-

value pair in the KVS, where the key isIntKeyi and the value is a list of one or more

associated keys (such aski). If this key-value pair is evicted from the KVS, all its associated

keys must be invalidated as well11. The valuevi is only stored if three conditions are satisfied

9In this experiment, the RDBMS, cache server, and the client are hosted on the same PC. While there are
inter-process communications, there are no inter-processor communications.

10Compression enables a more scalable infrastructure because it frees shared resources such as the cache
space and the network bandwidth.

11A key is invalidated if it contains a value or an I lease. If it contains a Q lease, the key must be kept.

74

www.manaraa.com

at the time of the SQLT-SETIK call (a) all triggers were registered, (b) all intermediate keys

were already associated withki prior to this call, and (c) there exists an I lease forki with a

matching token. If all conditions are met,ki-vi is inserted into the KVS.

If a trigger in the set{Trigs} is not found in this hash table, SQLTrig places the trigger

in a registration queue and returns without insertingki-vi in the KVS, i.e., discardski-vi.

A background trigger registration thread consumes elements of the trigger queue and issues

commands to a Trigger Registration (TR) process to register each trigger with the RDBMS.

TR maintains a list of triggers it has registered with the RDBMSand does not register the

same trigger more than once. TR is written using Java and usesthe JDBC driver of SQL-

X to register triggers. It runs continually as a service and detects if it loses connection to

the RDBMS (for example, due to the RDBMS restarting). In the eventof connection loss,

TR will re-connect to the RDBMS and rebuild its list of known triggers by querying the

RDBMS. Once it registers a trigger successfully, it returns control to the background thread

of the SQLTrig server. This thread inserts the trigger in thehash table of registered triggers

and proceeds to the next trigger in its queue.

Quarantine-and-Register-IntKey, SQLT-QAREGIK(TID, IntKey), resembles the Quarantine-

and-Register command of Section 4.2.4 and includes handlingof IntKeys. When a SQLT-

QAREGIK command is received, it looks up all the keys associated with theIntKeyi. For

each key,ki, a Q lease is acquired andki is associated with the TID. Additionally,IntKeyi

is also associated with the TID. When Delete-and-Release, DaR(TID), is called, the server

invalidates and releases its lease on all keys associated with the TID. All keys associated

with IntKeys that are tied to the TID are also invalidated. This step is necessary because the

mapping of IntKey to a key may not have existed when SQLT-QAREGIK was called, mean-

ing that no Q lease was acquired for that key. In the event thatanother session successfully

stores a key-value pair into the KVS for that key, the key mustalso be invalidated by DaR.

Finally, DaR removes the TID from the KVS.

75

www.manaraa.com

5.6 Evaluation of QCN

This section compares an implementation of Query Change Notification (QCN)12 with Ap-

plication Developer Consistency (ADC)13, RDBMS Trigger Driven (Trig)14 and Synthetic15

along three dimensions: 1) man hours required to design, implement and debug an approach,

2) average processing time, 3) served stale data. We first begin with a description of the

benchmark used for this evaluation.

5.6.1 RAYS and a Social Networking Benchmark

Recall All You See (RAYS) [35] envisions a social networking system that empowers its

users to store, retrieve, and share data produced by devicesthat stream continuous media,

audio and video data. Example devices include the popular Apple iPhone and inexpensive

cameras from Panasonic and Linksys. It is deployed on an Amazon EC2 instance with an

active community of users. Similar to other social networking sites, a user registers a profile

with RAYS and proceeds to invite others as friends. A user may register streaming devices

with RAYS and invite others to view and record from them. Moreover, the users profile

consists of a Live Friends” section that displays those friends with a device that is actively

streaming. The user may contact one or more of these friends to view their stream(s).

For the purpose of evaluation the RAYS system is deployed in 2 different configurations.

The first configuration is termed SQL-X, where the system utilizes only the RDBMS to

serve all requests. The second configuration is named QCN, where a cache is utilized in

a CADBMS architecture using the QCN approach described in Section 5.3. We use two

popular navigation paths of RAYS to both describe and evaluate QCN. They are named

Browsing friends (Browse) and Toggle streaming (Toggle). While Browse is a read-only

workload, Toggle results in updates to the database requiring the cache to remain consistent

with the database. We describe each in turn.

Browse emulates four clicks to model a user viewing her profile, her invitations to view

streams, and her list of friends followed with the profile of afriend. With SQL-X, Browse

issues 38 SQL queries to the RDBMS, see Table 5.2. With QCN, Browseregisters 33 distinct

queries and issues 8 get operations. For each get that observes a cache miss, it performs a put

12See Section 5.3 for a description of QCN.
13See Section 5.1.1 for a description of ADC.
14See Section 5.1.2 for a description of Trig.
15See Section 5.1.3 for a description of Synthetic.

76

www.manaraa.com

Operation Browse Toggle

SQL-X
SQL Queries 38 23
SQL Updates 0 3

QCN

put 8 7
get 8 7
hits 0 0
Registered queries 33 23
Cached key-value pairs 8 7
SQL Queries 38 23
SQL Updates 0 3

Table 5.2: Characteristics of two different sequences of page visits and clicks with RAYS
using an empty cache.

Term Definition
N Number of simultaneous users/threads.
n Number of users emulated by a thread.
ε Think time between user clicks executing a sequence.
θ Inter-arrival time between users emulated by a thread.
ω Number of users in the database.
u Probability of a user referencing a Toggle sequence.

Table 5.3: Workload of parameters and their definitions

operation. With an empty cache, the get operations observe no cache hits and this sequence

performs 8 put operations.

Toggle corresponds to a sequence of three clicks where a userviews her profile, her list

of registered devices and toggles the state of a device. The first two result in a total of 23

queries with SQL-X. QCN issues 7 get operations that observe acache miss with an empty

cache. QCN executes 23 queries and perform 7 put operations topopulate the cache. With

the last user click, if the device is streaming then the user stops this stream. Otherwise, the

user initiates a stream from the device. This results in 3 update commands to the database,

see Table 5.2. With QCN, these updates invalidate cached entries corresponding to both the

profile1 and devices pages. With a populated cache, the number of deletes is higher because

each toggle invalidates the Live Friends” section of those friends with a cached entry.

Our multi-threaded workload generator targets a database with a fixed number of users,

ω. A thread simulates sequential arrival ofn users performing one sequence at a time.

77

www.manaraa.com

There is a fixed delay, interarrival time,θ, between two users issued by the thread. A thread

selects the identity of a user by employing a random number generator conditioned using a

Zipfian distribution with a mean of 0.27.N threads modelN simultaneous users accessing

the system. In the single user (1 thread,N=1) experiments, this means 20% of users have

80% likelihood of being selected. Once a user arrives and heridentity is selected, she picks

a Toggle sequence with probability ofu and a Browse sequence with probability (1 − u).

There is a fixed think timeε between the user clicks that constitute a sequence. Table 5.3

contains a summary of the parameters used.

We target a small database consisting of 1,000 unique users,eliminating cache replace-

ment as an experimental variable. A RDBMS update invalidates cached key-value pairs,

resulting in a cache hit rate lower than 100%. We measure the time to perform updates

with and without QCN, quantifying the overhead of registeredqueries when the RDBMS

processes updates.

The workload generator maintains the structure of the synthetic database along with in-

formation about the activities of different users to detectcached data (HTML pages) that

are not consistent with the state of the database, termed stale data. The workload generator

produces unique simultaneous users accessing RAYS. This means a more uniform distribu-

tion of access to data with a larger number of threads. While this is no longer a true Zipfian

distribution, obtained results from different alternatives are comparable because the same

workload is used with each alternative.

In addition, we present average processing time of a sequence. Processing time consists

of the service time to process the pages that constitute a sequence, think time between the

clicks, and queuing delays (if any). To illustrate, with a think time of 100 msec, zero service

time, and no queuing delay, the minimum processing time for Browse and Toggle sequences

is 300 and 200 milliseconds, respectively. This is because Browse emulates 4 user clicks

while Toggle emulates 3 user clicks. The first click is the arrival of the first page visit by the

user, i.e., incurs no think time.

Due to licensing restrictions, we cannot disclose the identity of the commercial RDBMS

product used for our reported performance numbers. The termRDBMS refers to an anony-

mous commercial product, referred to as SQL-X. This producthas the following limitation

when multiple threads update the database with tens of thousands of registered queries. The

response time of an update increases dramatically from a fewmilliseconds with one thread

to minutes with multiple threads. We anticipate this limitation to be resolved in subsequent

78

www.manaraa.com

RDBMS releases and avoided it by issuing updates one at a time using our infrastructure.

5.6.2 Software development effort

Synthetic is trivial to implement and we spent less than an hour to implement it with RAYS

by employing a global Time-To-Live(TTL) value. QCN is the next simplest technique and

we spent approximately 5 hours to fine tune SQL queries used byBrowse and Toggle se-

quences to register at the granularity of query level notification. With ADC and Trig ap-

proaches, there was significant overlap in the design of the cache consistency. Moreover,

debugging one helps debugging of the other. We spent approximately 90 hours to implement

both approaches. Below, we describe the details of this implementation.

While the benchmarks we conducted were focused on users toggling their devices to

start or stop streaming, in the real RAYS system, the user is able to perform other operations,

such as modify their profile information or friend relationships with others Such modifica-

tions may cause some cached data to no longer be up-to-date and require invalidation to

avoid serving stale data. Capturing all possible interactions becomes a tedious process of

examining each possible modification and how it impacts the cache entries.

With QCN, all of these cases are automatically covered by registering queries. QCN

development requires a programmer to use the monitoring tool to determine which queries

are either not registered or registered at the granularity of table notification, and to re-write

these queries. Note that the re-written queries do not impact the application logic. QCN used

them to associate with a cached key-value pair.

In order to fairly compare the different techniques, we had to develop ADC/Trig invali-

dation schemes that would cover all the potential modifications by users. Most of the 90 man

hours was spent on identifying these scenarios and implementing the appropriate invalidation

schemes in the form of database triggers or cache invalidation logic in the application. Issues

with the transitive nature of friendship and how it was employed in our environment further

complicated the implementation. QCN eliminates this analysis and its associated software.

5.6.3 Processing time and stale data

We analyzed the average processing time of each technique and its percentage of served

stale data as a function of the number of simultaneous users,see Figure 5.5. These results

pertain to a warm cache, one with a cache hit rate close to 100%. As a reference point,

79

www.manaraa.com

5.5.a) Average processing time

5.5.b) Percentage inconsistent data

Figure 5.5: Comparison of alternative approaches.ε=100 msec,θ=0, ω=1,000,u=1%,
n=10,000.

80

www.manaraa.com

N
ADC QCN

Toggle Browse Toggle Browse
1 0.2 0.3 2.1 0.3
10 0.2 0.3 4.4 0.3
20 0.2 0.3 9.3 0.3
50 0.3 0.3 35.2 0.3
100 0.4 0.3 98.9 0.3

Table 5.4: Processing time (Seconds) of Browse and Toggle Sequences.ε=100 msec,θ=0,
ω=1,000,u=1%,n=10,000.

we also present numbers from SQL-X. With this approach, the most up-to-date data should

be retrieved directly from the RDBMS during every sequence. However, there are race

conditions in the workload generator between the point of retrieval and verification. They

results in a small amount of inconsistency with a high numberof simultaneous users, see

Figure 5.5.b.

Overall, both ADC and Trig approaches provide the best processing time and request

rates. Moreover, they produce least amount of stale data16. Synthetic is sensitive to the value

of TTL. A high TTL value (60 seconds) enables Synthetic to approximate the performance

of the ADC and Trig approaches, see Figure 5.5.a. However, itproduces the highest amount

of stale data, see Figure 5.5.b. A lower TTL value minimizes the amount of stale data and

increases the processing time. In general, it is challenging to decide a value for TTL.

With the number of simultaneous users,N , as 50 and 100, QCN results in a higher aver-

age processing time when compared with ADC and Trig approaches. This is because its tens

of thousands of registered queries cause the RDBMS to processes SQL update commands

slower. As shown in Table 5.4, the average processing time for a Toggle sequence is sig-

nificantly higher with QCN. Furthermore, the time required toperform a Toggle sequence

increases dramatically with a higher number of simultaneous users. This increase is largely

due to queuing delays as the workload generator was restricted to issue one update at a time,

see the last paragraph of Section 5.6.1. On the other hand, the average processing time of

Browse with QCN remains low in all configurations.

With 1 user,N =1, the response time of updates with QCN is slower than SQL-X.This

appears to be a limitation in the latest release of the RDBMS andwe anticipate it to be

16With no consistency technique, the percentage inconsistency observed is 15%, 26%, 32%, 34%, and 42%
with 1, 10, 20, 50, and 100 simultaneous users, respectively

81

www.manaraa.com

BG Action Read Only Very Low Low (1%) High (10%)
(0.1%) Write Write Write

View Profile 40% 40% 40% 35%
List Friends 5% 5% 5% 5%
View Friends Requests 5% 5% 5% 5%
Invite Friend 0 0.04% 0.4% 4%
Accept Friend Request 0 0.02% 0.2% 2%
Reject Friend Request 0 0.02% 0.2% 2%
Thaw Friendship 0 0.02% 0.2% 2%
View Top-K Resources 40% 40% 40% 35%
View Comments on Resource 10% 9.9% 9% 10%

Table 5.5: Four mixes of social networking actions with BG.

resolved in future releases. We are almost certain that the performance of updates with QCN

will improve as query notification feature of commercial RDBMSs matures, rendering QCN

viable for a larger number of simultaneous users and registered queries (data set sizes).

In sum, QCN expedites software development cycle to enable organizations to quickly

develop and deploy features. The limitation of QCN with updates in current RDBMSs moti-

vates the need for a different approach to transparent consistency, which is studied in SQL-

Trig.

5.7 Evaluation of SQLTrig

This section employs the BG [12] benchmark to compare the performance of an industrial

strength relational database management system named SQL-X with itself and when ex-

tended with SQLTrig, see Section 5.5. As a comparison yard stick, we present performance

of SQL-X with Twemcache and developer provided software to maintain the key-value pairs

consistent with the tabular data. Below, we provide an overview of the BG benchmark. Sub-

sequently, Section 5.7.2 characterizes the queries (keys)and result sets (values) generated

by this benchmark. Section 5.7.3 presents the social actionrating (SoAR) of the alternative

configurations using BG. These results demonstrate that SQLTrig enhances the performance

of SQL-X by more than two folds while providing physical dataindependence.

82

www.manaraa.com

5.7.1 BG Social Networking Benchmark

BG [12] is a benchmark to quantify the performance of a data store for processing interactive

social networking actions and sessions. These actions and sessions either read or write a

very small amount of the entire data set. In addition to response time and throughput, BG

quantifies the amount of unpredictable data produced by a data store. This metric refers to

either stale, inconsistent, or invalid data produced by a data store. This is particularly useful

because it enabled us to experimentally verify SQLTrig produces no stale data.

BG computes a Social Action Rating (SoAR) of a data store based ona pre-specified ser-

vice level agreement (SLA) by manipulating the number of threads (i.e., emulated members)

that perform actions simultaneously. SoAR is the maximum system throughput (actions per

second) that satisfies the SLA. All SoAR ratings in Section 5.7.3 are established with the

following SLA: 95% of requests observe a response time of 100milliseconds or faster with

no unpredictable (stale) data.

In the reported experiments, BG constructs a database consisting of either 10,000 or

100,000 members with 100 friends per member17 and 100 resources per member. BG em-

ulates members as socialites using a Zipfian distribution with exponent 0.27. This means

roughly 20% of the members perform actions of Table 5.5 as socialites.

Table 5.5 shows the interactiveactionsof BG which are common to many social network-

ing sites [12]. This table shows the four different workloads that we explore in this study. A

read-only workload that performs no write actions and threedifferent mix of read and write

actions with the percentage of write actions varying from 0.1% to 10%. The workload of

social networking applications is dominated (> 99%) by read actions [9, 62].

All results reported below were obtained using eight nodes with the following specifica-

tions: Windows Server 2003 R2 Enterprise x64 bit Edition Service Pack 1, IntelR© Core
TM

i7-2600 CPU 3.4 GHz, 16 GB RAM, Seagate 7200 RPM 1.5TB disk. The BG clients exe-

cute on six nodes preventing the benchmarking infrastructure from becoming the bottleneck.

Two different nodes host the RDBMS and the KVS (either Twemcache server or SQLTrig

server). These nodes communicate using a 1 Gigabit Ethernetswitch.

83

www.manaraa.com

BG Action
Size of key-value pairs in bytes

Custom Marshalling Java Marshalling
Uncompressed CompressedUncompressed Compressed

View Profile 1,197 703 7,420 3,486
List 100 Friends 82,836 50,740 107,883 55,744
View Friends Requests 338 111 5,778 2,411

(Empty)
View Top-5 Resources 1,865 1,198 8,351 4,110
View Comments on 185 91 5,359 2,365

Resource (Empty)

Table 5.6: Size of key-value pairs produced by different BG actions.

Members(userid, username, pw, firstname, lastname, job,

gender, jdate, ldate, address, email, tel, thumbnailImage)

Friends(̂frdID1, ̂frdID2)

PdgFrds(̂inviterID, ̂inviteeID)

Resource(rid, ̂creatorid, ̂walluserid, type, body, doc, priority)

Manipulation(mid,modifierid, r̂id, ̂creatorid, timestamp, type, content)

Figure 5.6: SQL-X database design with no images. Two records in the Friends table repre-
sents the friendship between two members. The underlined attribute(s) denote the primary
key of a table. Attributes with a hat denote the indexed attributes.

84

www.manaraa.com

5.7.2 Size of key-value pairs

Table 5.6 shows the different BG actions and the characteristic of their produced key-value

pairs. TheView Profileaction of BG consists of a SQL query that retrieves (1) the profile

attributes of a member such as her first name, last name, picture, etc., (2) her number of

friends, (3) her number of pending friend invitations, and (4) her number of resources. Per

the schema of Figure 5.6, the “where” clause of the SQL query is an exact-match selection

predicate referencinguseridattribute of the Members table. As shown in Figure 5.6, aggre-

gated information for items (2), (3), and (4) are represented as attributes. These counts are

kept up-to-date as part of the stored procedures that modifythe database state in response to

actions such as Thaw Friendship and Invite Friend.

The SQL query that implementsList Friendsrequires an equi-join between Friends and

Members tables with an exact-match look up using the userid of the member whose friends

is being listed. The SQL query for View Friend Request is similar and uses the PdgFrds

table.

View Top-5 Resourcesis implemented using a SQL query that employs a range predicate

on the priority attribute of the Resource table. The SQL querythat implementsView Com-

ments on Resourceconsists of an exact-match selection predicate using the rid attribute of

the Resource table.

Table 5.6 shows that the custom marshalling technique of Section 5.5.1 results in a more

compact representation than the generic Java marshalling technique. This is consistent with

the YCSB results shown in Table 5.1.

Actions that write to the RDBMS (such asInvite Friend, andThaw Friendship, see Ta-

ble 5.5) invoke SQLTrig’s authored triggers to invalidate the impacted key-value pairs. A

subsequent reference for these key-value pairs observes a KVS miss, is redirected to the

RDBMS for processing, and a new key-value pair is inserted in the KVS. The keys invali-

dated by each write action are enumerated in Table 5.7.

5.7.3 Social Action Rating

This section reports on the Social Action Rating (SoAR) of the following three different

configurations:

1. An industrial strength RDBMS named SQL-X by itself,
17100 is the median number of friends for a Facebook member [83,10].

85

www.manaraa.com

BG Write Action Number of Keys Keys Invalidated
Invalidated

Invite Friend 2 View Profile for Invitee
(Inviter, Invitee) View Friends Requests for Invitee
Reject Friend Request 2 View Profile for Invitee
(Inviter, Invitee) View Friends Requests for Invitee
Accept Friend Request 5 View Profile for Invitee
(Inviter, Invitee) View Profile for Inviter

View Friends Requests for Invitee
List Friends for Invitee
List Friends for Inviter

Thaw Friendship 4 View Profile for Invitee
(Inviter, Invitee) View Profile for Inviter

List Friends for Invitee
List Friends for Inviter

Table 5.7: Keys invalidated by SQLTrig’s authored triggerswhen processing a BG write
action.

2. SQL-X configured with SQLTrig per discussions of Section 5.5, and

3. SQL-X configured with Twemcache and maintained consistent using developer pro-

vided software. This deployment is named application developer consistency, ADC,

and is implemented as follows. It represents query instances and their results as key-

value pairs. It extends the write actions of BG by identifyingimpacted query instances

(keys) whose results (values) have changed and issuing Twemcache delete calls for

these keys.

SQLTrig’s authored triggers compute the same set of keys as those deleted by ADC. Hence,

ADC is comparable to SQLTrig with one key difference: the BGClients issue the delete

calls directly to the KVS and there are no authored/registered triggers. One may use the

performance observed with ADC as a measuring yard stick to quantify the overhead of the

triggers authored by SQLTrig and executed by the RDBMS in the presence of updates.

Below, we compare the SoAR of the three alternatives using both a small and a large

social graph consisting of 10,000 and 100,000 members, respectively. With both graphs,

each member has 100 friends and 100 resources. The small database is two Gigabytes in

86

www.manaraa.com

Workload
10,000 Members 100,000 Members

SQL-X ADC SQLTrig SQL-X ADC SQLTrig
Read Only 27,856 62,025 62,103 25,411 63,292 62,449
0.1% Write 23,144 62,479 62,051 21,584 61,032 62,594
1% Write 16,292 61,333 61,612 13,227 22,418 21,763
10% Write - - - 10,055 14,404 12,004

Table 5.8: SoAR, actions per second, of SQL-X by itself, extended with Twemcache that is
maintained consistent using developer provided software,and using SQLTrig. Results are
shown for two different social graphs consisting of 10,000 members and 100,000 members.
Each social graph consists of 100 friends per member and 100 resources per member.

size and fits in the memory of the server hosting SQL-X configured to be 6 Gigabytes in

size. The large graph is 14 Gigabytes in size and does not fit inthe memory of the RDBMS

server.

Table 5.8 shows the SoAR of the alternative configurations with the small social graph

(10,000 members). With the alternative workloads of Table 5.5, the cache augmented ar-

chitecture enhances the performance of SQL-X more than two folds. SQLTrig and ADC

provide comparable performance with the read-only, 0.1% and 1% update workloads. This

is because the network bandwidth of the server hosting the KVS (3 Gbps) is fully utilized,

dictating the observed SoAR. The CPU cores of the cache server are less than 50% utilized

in these experiments. This means configuring the cache server with additional networking

cards would enable it to support a higher SoAR rating. The workload with a 10% mix of

write actions was not run with the small social graph becausethe data sharded across 6 BG

Clients could not accurately satisfy that ratio of write actions. With a skewed workload

(Zipfian exponent of 0.27) and a high throughput, friendshiprelationships between members

in a small shard would be exhausted, leading to a write actionratio lower than 10%. This

limitation was not observed with the larger social graph (100,000 members).

The 100,000 members column of Table 5.8 shows the SoAR of alternative configurations

with the large social graph. With the alternative workloadsof Table 5.5, the cache augmented

architecture enhances the performance of SQL-X more than two folds. SQLTrig and ADC

provide comparable performance with the read-only and 0.1%update workloads. This is

because the network bandwidth of the server hosting the KVS (3 Gbps) is fully utilized,

dictating the observed SoAR.

87

www.manaraa.com

With a higher mix of write actions (1% and 10%), the server hosting SQL-X becomes

disk-bound, forming a read and write queue to the disk. With SQLTrig, execution of some

triggers (e.g. triggers generated from a query containing an equi-join predicate) require the

trigger to query the RDBMS to identify impacted queries whose results are no longer valid.

This causes SQLTrig to provide a lower SoAR than the developer provided solution (see last

2 rows of Table 5.8 for 100,000 members) when the RDBMS becomes disk-bound since the

additional querying further exacerbates the bottleneck onthe disk. This overhead translates

to SQLTrig performing slower than ADC by 3% with the 1% updateworkload and 16% with

the 10% update workload. ADC invalidates key-value pairs inthe application (each client of

BG), imposing a lower load on SQL-X to outperform SQLTrig.

In sum, a developer provided solution such as ADC outperforms SQLTrig when the

server hosting SQL-X becomes disk-bound. This is due to the overhead of SQLTrig’s use of

triggers. With a lower ratio of write actions, this overheadis negligible (3%) but it becomes

significant with a larger ratio of write actions when the diskbecomes a much greater bottle-

neck to performance. Other experiments that fully utilize the network bandwidth of the KVS

server show that ADC and SQLTrig provide comparable performance. This is because their

percentage difference is less than 2% and we attribute this to experimental noise.

88

www.manaraa.com

Chapter 6

Correctness of SQLTrig

SQLTrig supports consistent reads and produces a serial schedule of executed transactions

due to 3 invariants presented in this section. These differentiate between read/write read/write

operations of the RDBMS and the KVS. With the RDBMS, these operations pertain to trans-

actions. With the KVS, these operations are at the granularity of get, put, and delete key-

value pairs. In the case of query result caching with SQLTrig, a KVS get is equivalent to the

execution of one read transaction. A serial schedule is at the granularity of transactions.

6.1 Properties

The invariants are realized based on an implementation of SQLTrig that satisfies the follow-

ing properties:

1. RDBMS is configured to ensure ACID properties of transactionswith no dirty reads,

dirty writes, or un-repeatable reads.

2. Prior to populating the KVS with a key-value pair, SQLTrigregisters triggers associ-

ated with the key-value pair and establishes the mapping between ITs and the key.

3. SQLTrig does not cache the result of queries that are a partof a multi-statement trans-

action.

4. RDBMS synchronously executes (SQLTrig authored) triggersas a part of a transaction

that updates the database. During the execution of the trigger, readers of the affected

rows are blocked and have to wait for the completion of the write transaction invoking

89

www.manaraa.com

the trigger. Once a trigger invokes the KVS server to delete an IT, the KVS server

must delete the corresponding key and return success. If this fails then the trigger fails

and the transaction aborts. In order for a transaction to commit, all its invoked triggers

must execute successfully. This is the invalidation technique of Section 4.2. (Refresh

technique produces stale reads.)

5. SQLTrig employs the IQ framework of Section 4.2 to detect and resolve write-write

conflicts that occur due to the coupling of RDBMS and KVS that impact the correct-

ness of a subsequent read transaction that observes a KVS hit. When the application

observes a KVS miss for a query, it executes a read transaction against the RDBMS

and stores its resulting key-value pair in the KVS with a put operation. This read

transaction may race with a DML transaction that invokes a trigger to delete the same

key-value pair. The trigger delete may occur prior to the read transaction inserting

its stale key-value pair in the KVS, causing the KVS to contain stale key-value pairs.

The IQ framework enables the KVS to detect this race condition and ignore the put

operation. This ensures the application will observe either a key-value pair that is con-

sistent with the tabular data or a KVS miss that redirects it to issue a transaction to the

RDBMS.

6. With RDBMSs configured to use Snapshot Isolation [77], a get that observes a miss

and races with an RDBMS update may compute a stale value. The IQ framework

prevents the stale value from this get operation from being inserted in the KVS.

6.2 Invariants

Invariant 1: All key-value pairs produced by the KVS at timeT1 are consistent with the

state of the database at timeT1, reflecting all committed transactions up toT1.

Three properties guarantee the correctness of this invariant. First, Property 2 ensures a

transaction that updates the RDBMS invalidates the corresponding cached key-value pair.

Second, Property 4 ensures a transaction does not commit until the invalidation is complete.

If the body of the trigger fails then the RDBMS aborts the transaction, leaving the state of the

database consistent with the cached key-value pairs. This guarantees a thread observes its

own updates to the database because, once it issues a transaction, it cannot proceed until its

RDBMS update is reflected in the KVS. Thus, for all committed transactions, triggers would

90

www.manaraa.com

have invalidated all impacted key-value pairs. One or more of these invalidated key-value

pairs may become KVS resident soon after an invalidation because a subsequent reference

for them observed a KVS miss, issued transactions to the RDBMS,computes these key-value

pairs, and inserted their most up-to-date version in the KVS. These entries are consistent with

the state of the database and reflect all committed transactions.

Third, Property 5 detects and resolves KVS put-delete (i.e., write-write) race conditions

that cause the cached key-value pairs to become inconsistent with the tabular database.

Invariant 2: No key-value pair in the KVS reflects uncommitted transactions (both mid-

flight and aborted transactions).

Property 1 prevents data from a mid-flight DML transaction tobe visible to other con-

currently executing transactions. This prevents both dirty reads or un-repeatable reads,

guaranteeing computed key-value pairs reflect result of queries computed using a consis-

tent database state.

A mid-flight DML transaction may abort and result in one of twopossible scenarios.

First, the transaction aborts before causing the trigger tofire. In this case, the contents of

the KVS and the state of data in the RDBMS will be unchanged and consistent with one

another. Second, the transaction aborts after the trigger fires and executes its invalidation

code, purging the cached key-value pair. In this case, the invalidation is unnecessary because

the state of the database is unchanged (aborted transactionis rolled back). However, while

the unnecessary invalidation may degrade the performance of the system, it will not violate

the consistency of the framework because subsequent requests will result in a KVS miss and

be directed to the RDBMS.

Invariant 3: Read-write conflicts due to concurrent transactions manipulating the same

data item are serializable.

Consider two transactions that access the same data itemDi. One transaction readsDi

while the second updatesDi. Their concurrent execution results in two possible scenarios.

In the first scenario, the reader observes a KVS miss (becausethe writer deletedDi from the

KVS) and is re-directed to the RDBMS which guarantees the serial schedule between the

reader and the writer. Property 6 ensures the reader does notinsert a stale value in the KVS

due to the use of MVCC techniques such as Snapshot Isolation. In the second scenario, the

reader consumesDi from the KVS and the writer deletes it subsequently. In this case, the

reader is ordered to occur prior to the updating transactionto produce a serial schedule.

In summary, these invariants guarantee that SQLTrig produces a serial schedule of trans-

91

www.manaraa.com

actions. Due to Invariant 1 and Invariant 2, a request issuedagainst the KVS will produce

the same result as if it were issued against the RDBMS, at any point in time. With Invariant

3, race conditions that occur during read-write conflicts are resolved in a manner that yields

a serial schedule. Along with Property 1, SQLTrig, providesfor ACID properties.

92

www.manaraa.com

Chapter 7

Future Research

While the initial implementation of SQLTrig has been shown toenable transparent caching

in Cache Augmented Database Management Systems (CADBMS), there remain many inter-

esting future extensions. These include the design and implementation of a scalable, highly

available and elastic SQLTrig system using a multi-node deployment. In addition, one may

extend both the queries supported by SQLTrig and the IQ framework. The following sections

discuss these research questions in turn.

7.1 Scalability of the Cache Layer

The current implementation of SQLTrig functions with a single KVS node as its cache (a

modified version of memcached [8]). The node is main-memory based and can be accessed

significantly faster than the RDBMS, but if the load is high enough, even a single main-

memory node can be overwhelmed. The scalability of a system is important when it comes

to handling an increasing workload. An interesting research direction is to design and im-

plement a scalable, highly available, and elastic SQLTrig.A preliminary design is described

below.

A scalable SQLTrig utilizes multiple KVS nodes arranged in acluster. Ideally, the load

should be distributed evenly across the nodes such that any one node is not overwhelmed.

To realize elasticity, the addition and removal of nodes should not require a shut-down of the

entire system. Here, we assume the system is deployed in a data center-like topology, where

all KVS nodes can be accessed by any client as well as any otherKVS node.

As shown in Figure 7.1, the cluster features a horizontally hash partitioned key-space

93

www.manaraa.com

Figure 7.1: Distribution of the key space across 3 KVS nodes (C1, C2, and C3) in a cluster.
The master node keeps track of all KVS nodes.

with no replication, similar to distributed hash table designs such as Chord [78] and CAN [69].

While these designs are decentralized, one may simplify the design using a centralized mas-

ter node. Below we describe one such design.

Each KVS node is responsible for a portion of the hash space. The hash space is parti-

tioned into P fragments. For example, consider the example shown in Figure 7.1 where P =

3. Partition 1 contains keys K1 and K2. The KVS node C1 is responsible for this partition.

In practice, with S as the number of nodes, P should be much larger than S to allow for a

better distribution of load across the nodes. This simplifies operations to invalidate all keys

in a partition or disable access to them.

There is a centralized master node (e.g.,a ZooKeeper [7]) that is in charge of node addi-

tions and removals. The master node is aware of all KVS nodes and the portion of the hash

space that each node is responsible for. When a node is added, it contacts the master node

for a portion of the hash space and a list of all active nodes with their partition assignments.

The master node re-assigns partitions across the nodes, taking the new node into account.

When re-assigning partitions, 2 different approaches can betaken for existing data in any

re-assigned partitions:

94

www.manaraa.com

Figure 7.2: Insert procedure.

1. Invalidate all keys in the affected partitions. Since theKVS functions as a secondary

store of the data, invalidating all keys in the partition would maintain the consistency

of the data. Clients accessing the KVS will re-populate the key-value pairs over time.

However, this course of action comes at the cost of reduced throughput when the keys

are initially invalidated.

2. Migrate all keys in affected partitions to their new node.To improve the cache hit

rate, migrating the key-value pairs to their new destination will allow the system to

continue to serve requests for those keys. This might becomean expensive operation

if the system is incurring a heavy load. Internal key (IntKey) to Key mapping either

has to be migrated as well, or the IntKey to Key mapping shouldalways be shared

among all KVS nodes.

Each KVS node is aware of other active nodes. When the master node changes the

cluster, it notifies each KVS node of the new partition assignments. If a request arrives at the

wrong node, it is handled differently depending on the type of request. If a delete request

arrives at the wrong node, it is forwarded to the responsiblenode. The response is returned

through the node first accessed. When a list of IntKeys is sent to a KVS node from the

RDBMS, if that node responds with success, the RDBMS can assume that if a get/insert

request initially arrives at the wrong node, the requester is redirected to the correct node.

This has the effect of simplifying RDBMS invalidations.

95

www.manaraa.com

ColumnName Type Description

ServerId INTEGER Unique Identifier for KVS server
HostName VARCHAR(256) KVS server hostname.
Port INTEGER KVS server port.
Active BOOLEAN Current status of the KVS server.

Table 7.1: CacheServers table.

As an example, say a client is trying to insert a key into the system, see Figure 7.2. The

client first attempts to insert the key, K3.5 which maps to partition 2, to a KVS node, C1 (if

no nodes are known to the client, it may contact the Master node). C1 is the wrong node and

will respond with the node address it believes is responsible for that key using its partitioning

information about its neighbors. In this example, C1 responds with “Wrong Server, Try C2”.

The client sends its insert command to C2. If this request succeeds, the value is stored in

the KVS. The client library keeps track of C2 being in charge ofthat partition so that in the

future, requests for partition 2 can be directed to this nodefirst. If the request failed again,

the client now contacts the Master node for the responsible node for the intended partition.

The get operation goes through a similar process as well. If Gumball is enabled but the insert

is against a different server from when the initial Get miss occurred, the value should not be

inserted. This is because Gumball only works with local server timestamps.

The RDBMS maintains a table with a list of active KVS nodes. Thistable is named

CacheServers and may contain the columns of Table 7.1. When a trigger is invoked, the

deletes are issued against any of the active nodes. If a node fails to respond, it will be

marked as inactive. The Master node will maintain the table up-to-date by adding/removing

entries that identify different nodes. When a trigger fires, it first checks the CacheServers

table. If the table is empty, the trigger returns. Otherwise, it select the first ACTIVE entry

from the CacheServers table and sends a list of IntKeys to the KVS server. The list of IntKeys

corresponds to the data modified by that write transaction. If the response of the KVS node

is a success, the trigger was invoked successfully and the transaction may proceed with its

execution. Otherwise, if the response was a failure, the trigger should restart and try again

with either the same CacheServers table entry or a different entry. The trigger may re-try up

to N times with N different entries in the CacheServers table.If it still fails, the RDBMS

transaction is aborted.

When a KVS node receives a list of IntKeys to invalidate, it broadcasts the list to all

active KVS nodes. Each KVS node then invalidates any entriesin its KVS based on its local

96

www.manaraa.com

IntKey to Key mapping. The benefit of this approach is that each KVS node only needs

its local IntKey to Key mapping to determine the affected keys. However, the downside is

that every invalidation is broadcast to all nodes always. Alternatively, the IntKey to Key

mapping can be shared among all active nodes. Invalidationscan be selectively sent to nodes

that are responsible. This requires that the mapping is shared among all the nodes when

it is generated. Furthermore, new nodes added to the system have to be aware of existing

mappings as well.

7.2 Data Availability

Middle-tier caches are designed to utilize commodity off-the-shelf servers to lower the cost

of deployment. However, these inexpensive servers are subject to failures.

Robust software is required to anticipate and handle these failures effectively. The avail-

ability of a system is an important aspect of data intensive applications and any amount of

down time can cost businesses losses in the order of hundredsof thousands of dollars an

hour [66]. This means that the system should continue operation in the presence of failures

by keeping the data alive.

One key insight when dealing with failures in a CADBMS is that ifa KVS server fails,

the data still exists on the backing store, which could be a RDBMS that supports ACID

properties. Data is never lost since the RBMDS always containsthe authoritative copy of

the data and requests can always be re-directed to the RDBMS. Since additional load is

placed on the RDBMS, the system will likely experience diminished performance when

recovering from such failures. Nevertheless, the system will still be able to function and

service requests.

In order to address this issue of fault tolerance, three types of commonly occurring fail-

ures need to be handled.

1. Transient and permanent node failure.

A node failure occurs when one of the servers enters an error state and does not respond

to requests. Apermanent node failureis when this error state persists and cannot be

resolved without input or interference from the system administrator. The cause of

the error state could be software (e.g. logical error causing an infinite loop) or in the

hardware (e.g. hard disk or network card failure).

97

www.manaraa.com

A transient node failureexhibits symptoms of a permanent node failure, but only tem-

porarily. When the cause of the transient node failure ceases, operation of the server

resumes as normal. For example, a hard disk to lock up temporarily due to malfunc-

tion and cause the node to fail to service requests. After some time, the malfunction

could cease, causing the node to return to normal operation.Transient node failures

are different from permanent node failures because the server will still contain cached

objects after it recovers from the transient failure. Because of this, care must be taken

to ensure that invalidations are handled properly and transient failures do not result in

an inconsistent state of data.

2. Connection failure (due to congestion or packet loss).

A client may also fail to communicate with the server when theunderlying connec-

tion used for communication cannot successfully transmit amessage. This may occur

due to network congestion, where multiple simultaneous connections compete for the

limited network bandwidth. Packets might be dropped, resulting in a timeout being

observed by a request. When the request times out, it can be re-transmitted but under

certain network conditions, the request may not make it to the server due to prolonged

congestion.

When a request fails to be transmitted, failure handling is performed differently de-

pending on the type of request that failed. A failed Get is treated as a Get miss [62].

This results in a slower service time for the application’s request since it couldn’t ac-

cess the cached value and has to query the RDBMS. Furthermore, after recomputing

the value, the client will attempt to store it into the KVS, even though the value already

exists. However, while the performance of the system is reduced, the correctness of the

system is not affected. This failure scenarios is addressedusing client-level retrans-

missions (separate from TCP retransmissions). When a failureis detected, the client

attempts to re-transmit its request a certain number of times until the request succeeds

or the number of re-transmissions reaches a threshold. Morestringent methods of

dealing with the failure are possible, but the cost of such techniques would outweigh

their benefit.

Failure of a Delete or invalidation requests however may result in stale data if the sys-

tem does not handle them properly, thus impacting the correctness of the system [62].

If a Delete fails to remove a key-value pair,ki and the KVS is allowed to continue serv-

98

www.manaraa.com

ing that entry, subsequent Get requests forki may result in stale reads. In the SQLTrig

framework, a key-value pair is only re-evaluated when a client observes a cache miss

for that entry. Thus, if data is modified in the RDBMS but the corresponding invalida-

tion message did not make it to the KVS server, the KVS will continue to serve that

stale value until another modification is made which invalidates that key-value pair.

The system must either ensure that the invalidation propagates to the affected KVS

server or reconfigure itself to avoid clients accessing the KVS server with stale data.

3. Network partition.

A network partition results in a grouping of nodes such that nodes in one group may

not communicate with nodes in another group. These separategroups are termed to

aspartition islandswhere all the nodes within an island may communicate with one

another, but none of the nodes can communicate with or is evenaware of a separate

island.

Network partitions have to be considered and handled differently from connection

or node failures. Within each island, it will appear as though the missing nodes have

failed and the system will mend itself individually within those islands. In the presence

of updates, the different islands may start to report a different and inconsistent view of

the system and its data. The possibility of network partitions affects the consistency

and availability guarantees that a system provides. As stated by the CAP theorem [19],

in the presence of network partitions, a system may not provide both consistency and

availability. Thus, a solution to handling network partitions must decide whether to

sacrifice consistency or availability of data.

7.2.1 Proposed Solutions

One possible design utilizes the CacheServers table of Section 7.1. See Table 7.1 for a

description of the table schema. The table is added to the RDBMSthat keeps track of the

available KVS servers and their status. It is created and maintained by the Master node and

can be looked up by the triggers to decide where to send an invalidation.

This table offers multiple options for triggers to route their invalidation messages to the

cache layer. The system is able to tolerate node failures by allowing the trigger to re-send

its invalidation to other nodes if an earlier attempt was sent to a failed node. Heartbeat

99

www.manaraa.com

messages are used by the Master node to keep track of the status of KVS nodes and update

the CacheServers table.

In the event of network connectivity issues between the RDBMS and a KVS node, the

KVS node may continue to serve requests to clients, providing data availability at the expense

of sacrificing consistency. In order to ensure consistency,the KVS node should instead

stop serving client requests as soon as it detects that it no longer has connectivity to the

RDBMS. Additionally, the data contained in the node has to be purged as it is unaware of

any missed invalidations from the RDBMS. This diminishes system performance during the

time the KVS instance is re-populated with key-value pairs.This recovery period might be

unreasonably long given today’s memory capacities, i.e., tens and hundreds of Gigabytes,

motivating the following two alternatives.

Deferred Invalidations Variant

A second possible approach is for the RDBMS to detect network dis-connectivity with a

KVS instance and store the notifications for this KVS in a table. Once connectivity is re-

established, the KVS contacts the RDBMS and reads the table to update its key-value pairs

(while processing in-progress notifications due to on-going RDBMS updates). It starts to

process request once it completes applying all the notifications buffered in the RDBMS table.

A key question with this technique is how long should the RDBMS accumulate notifications?

Given the inexpensive price of disks, an answer might be as long as the time required to

replay these notifications during recovery time does not exceed the time for the KVS to

reconstruct its entire contents, i.e., the first approach.

Client Proxy Variant

Yet another possibility might be to use other KVS instances (and CADBMS client compo-

nents of the participating applications that are a component of the physical data independence

solution) to route notifications from the RDBMS to the KVS instance that cannot commu-

nicate with the RDBMS. This requires the participants to employ a collaborative routing

protocol similar to those used by peer-to-peer networks, e.g., CAN [69], Chord [78], etc. It

is interesting to note that such a protocol facilitates elasticity of a CADBMS to accommodate

addition (removal) of KVS instances incrementally with no down time.

100

www.manaraa.com

7.3 IQ Framework Extensions

Chapter 4 demonstrates the feasibility of implementing strong consistency in CADBMSs

using an off-the-shelf RDBMS. It is based on a simple programming model that acquires

IQ leases from the KVS either prior to the start of an RDBMS transaction or during the

processing of the RDBMS transaction. The current implementation of IQ supports both

the invalidate and refresh methods of maintaining the KVS consistency with the RDBMS.

With today’s implementation, a session is limited to at mostone RDBMS transaction. A

key question is whether the framework provides strong consistency guarantees for sessions

consisting of multiple RDBMS transactions.

In contrast to the invalidate and refresh methods, an incremental approach [43] can be

used to update key-value pairs in the KVS. With an incremental approach, only a small

portion of the value is changed when data is modified in the RDBMS. As an example, a key-

value pair may contain the result set of a query selecting multiple rows from the RDBMS.

An update to the RDBMS causes the result set for that query to yield an additional row. In

response to the update, the refresh method recomputes the entire query in order to populate

the cache with the latest value. On the other hand, an incremental update method would

compute the particular row that should be added to the resultset and modify the key-value

pair by updating it with the additional row. The latter approach avoids re-executing the

original query, which may be beneficial in the case of expensive queries that select many

rows. The incremental update method provides another interesting avenue for researching

the feasibility of applying the IQ framework to provide strong consistency.

7.4 Supporting Additional Query Types With SQLTrig

As described in Section 5.4, SQLTrig supports queries containing exact-match selection

predicates, equi-join predicates, conjunctive (logicaland) and disjunctive(logicalor) com-

binations of those predicates as well as select clauses using aggregates. For unsupported

queries, SQLTrig avoids caching the result set and defaultsto routing those queries directly

to the RDBMS for execution. Expanding on the types of supportedqueries would allow

SQLTrig to cache a larger portion of the data in workloads that use those more complex

queries.

Queries containing range predicates are a candidate for support. One may support these

101

www.manaraa.com

using R-Trees [44]. TrigGen constructs one R-Tree for each query template whose clause

references a range selection predicate. A dimension of the R-Tree corresponds to a refer-

enced attribute. A query instance is ak dimensional polygon in the R-Tree (corresponding

to its query template) and whose results are used to compute akey-value pair. The R-Tree

is maintained by the KVS and TrigGen authors triggers to generate ak dimensional value.

These probe the R-Tree to identify matching polygons. Each polygon identifies queries

(keys) whose result sets (values) have changed. The KVS deletes these keys.

Other types of queries include outer-join queries, nested sub-queries and queries contain-

ing non-equijoin predicates, set operations or comparisons. To elaborate, consider nested

sub-queries. These nested sub-queries consist of select statements nested in another SQL

query. While arbitrarily complex queries can be constructedin this manner, SQLTrig might

support such queries by breaking down the nested query and supporting a superset covering

the selected rows. For example, consider the following query:

SELECT attr1, (SELECT attr2 FROM R2 WHERE attr3=C1)

FROM R1

WHERE attr4=C1

Since the nested sub-query does not interact with the rest ofthe query (uncorrelated sub-

query), the query can be supported by authoring triggers forthe nested sub-query separately

and also for the parent query while excluding the nested sub-query. Similar to how queries

containing logicalor predicates are handled (see Section 5.4.3), the query abovecan be

supported as though it were 2 separate queries. For correlated sub-queries, simple equi-

joins between attributes selected in nested sub-queries can be translated to separate queries

containing the join attribute and supported similar to how equi-join predicates are currently

handled as described in Section 5.4.2.

7.5 SQLTrig In Other Environments

While SQLTrig is designed to work with the SQL relational model, the concept of a seamless

caching approach with transparent cache consistency applies to many other data models as

well. Experimental results [13] show that query result lookup enhances the performance of

a NoSQL [24] data store solution such as MongoDB. Such extensions may require different

102

www.manaraa.com

mechanisms for detecting updates to the data store, such as MongoDB’s Oplog [60] which

maintains a rolling record of all operations that modify data in the data store.

Additionally, SQLTrig is currently implemented based on the Client Server (CS) archi-

tecture, as described in Section 3.1. The Shared Address Space (SAS) architecture described

in Section 3.2 presents an attractive area of future research for extending the SQLTrig im-

plementation. Characteristics of the SAS architecture suchas replication of key-value pairs

across nodes present different challenges in realizing SQLTrig and maintaining strong con-

sistency. This effort should include an analysis of how the internal keys, IntKeys, should be

partitioned to enable an architecture to scale to a large number of nodes. The discussions

of Section 7.1 to extend the implementation of SQLTrig to multiple SQLTrig servers with

partitioned keys offer relevant mechanisms for working with distributed cache nodes in the

SAS architecture.

103

www.manaraa.com

Bibliography

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. AutoAdmin: Self-Tuning

Database Systems Technology.IEEE Data Eng. Bull., 29(3):7–15, 2006.

[2] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Reinwald.

Cache Tables: Paving the Way for an Adaptive Database Cache. InVLDB, 2003.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: ADynamic Data Cache

for Web Applications. InICDE, pages 821–831, 2003.

[4] C. Amza, A. L. Cox, and W. Zwaenepoel. A Comparative Evaluation of Transparent

Scaling Techniques for Dynamic Content Servers. InICDE, pages 230–241, 2005.

[5] C. Amza, G. Soundararajan, and E. Cecchet. Transparent Caching with Strong Con-

sistency in Dynamic Content Web Sites. InSupercomputing, ICS ’05, pages 264–273,

New York, NY, USA, 2005. ACM.

[6] C. Aniszczyk. Caching with Twemcache, http://engineering.twitter.com/2012/07/caching-

with-twemcache.html.

[7] Apache. Apache ZooKeeper,http://zookeeper.apache.org/.

[8] Six Apart. Memcached Specification, http://code.sixapart.com/svn/memcached/trunk/server

/doc/protocol.txt.

[9] T. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. LinkBench: A Database

Benchmark Based on the Facebook Social Graph.ACM SIGMOD, June 2013.

[10] L. Backstrom. Anatomy of Facebook, http://www.facebook.com/note.php?noteid=

10150388519243859, 2011.

104

www.manaraa.com

[11] D. Z. Badal. Correctness of Concurrency Control and Implications for Distributed

Databases. InCOMPSAC, 1979.

[12] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark to Evaluate Interactive

Social Networking Actions. 2013.

[13] S. Barahmand, S. Ghandeharizadeh, and J. Yap. A Comparison of Two Physical Data

Designs for Interactive Social Networking Actions.CIKM, 2013.

[14] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing User Behavior

in Online Social Networks. InInternet Measurement Conference, 2009.

[15] P. Bernstein and M. Goodman. Concurrency Control in Distributed Database Systems.

ACM Computing Surveys, 13(2), June 1981.

[16] P. Bernstein and N. Goodman. Multiversion Concurrency Control - Theory and Algo-

rithms. ACM Transactions on Database Systems, 8:465–483, February 1983.

[17] C. Bornḧovd, M. Altinel, S. Krishnamurthy, C. Mohan, H. Pirahesh, andB. Rein-

wald. DBCache: Middle-tier Database Caching for Highly Scalable e-Business Archi-

tectures. InSIGMOD Conference, 2003.

[18] C. Bornhovdd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive Database

Caching with DBCache.IEEE Data Engineering Bull., pages 11–18, 2004.

[19] Eric A. Brewer. Towards Robust Distributed Systems (Abstract). InPODC, page 7,

2000.

[20] N. Bruno and S. Chaudhuri. Physical Design Refinement: The ”Merge-Reduce” Ap-

proach. InEDBT, pages 386–404, 2006.

[21] N. Bruno and S. Chaudhuri. Constrained Physical Design Tuning. VLDB J., 19(1):21–

44, 2010.

[22] JBoss Cache. JBoss Cache, http://www.jboss.org/jbosscache.

[23] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal. Enabling Dynamic Content

Caching for Database-Driven Web Sites. InSIGMOD Conference, pages 532–543,

2001.

105

www.manaraa.com

[24] R. Cattell. Scalable SQL and NoSQL Data Stores.SIGMOD Rec., 39:12–27, May

2011.

[25] S. Ceri and S. Owicki. On the Use of Optimistic Methods forConcurrency Control in

Distributed Databases. InSixth Berkeley Workshop on Distributed Data Management

and Computer Networks, February 1982.

[26] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable andHighly Available System for

Serving Dynamic Data at Frequently Accessed Web Sites. InACM/IEEE SC, Novem-

ber 1998.

[27] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable System for Consistently Caching

Dynamic Web Data. InProceedings of the 18th Annual Joint Conference of the IEEE

Computer and Communications Societies, 1999.

[28] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Ja-

cobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving

Platform.VLDB, 1(2), August 2008.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

Cloud Serving Systems with YCSB. InCloud Computing, 2010.

[30] Couchbase. Couchbase 2.0 Beta, http://www.couchbase.com/.

[31] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, D. VanderMeer, K. Ramamritham,

and D. Fishman. A Comparative Study of Alternative Middle Tier Caching Solutions

to Support Dynamic Web Content Acceleration. InVLDB, pages 667–670, 2001.

[32] A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, and K.Ramamritham. Proxy-

based Acceleration of Dynamically Generated Content on the World Wide Web: An

Approach and Implementation.ACM Transactions on Database Systems, pages 403–

443, 2004.

[33] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A Middleware System Which

Intelligently Caches Query Results. InIFIP/ACM International Conference on Dis-

tributed systems platforms, 2000.

106

www.manaraa.com

[34] C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. Olston, and A. Tomasic.

Scalable Query Result Caching for Web Applications. August 2008.

[35] S. Ghandeharizadeh, S. Barahmand, A. Ojha, and J. Yap. Recall All You See,

http://rays.shorturl.com, 2010.

[36] S. Ghandeharizadeh and J. Yap. Gumball: A Race Condition Prevention Technique for

Cache Augmented SQL Database Management Systems. InSecond ACM SIGMOD

Workshop on Databases and Social Networks, 2012.

[37] S. Ghandeharizadeh, J. Yap, and S. Barahmand. COSAR-CQN: AnApplication Trans-

parent Approach to Cache Consistency. InTwenty First International Conference On

Software Engineering and Data Engineering, Los Angeles, CA, Best Paper Award,

2012.

[38] Shahram Ghandeharizadeh and Jason Yap. Cache AugmentedDatabase Management

Systems. InProceedings of the ACM SIGMOD Workshop on Databases and Social

Networks, DBSocial ’13, pages 31–36, New York, NY, USA, 2013. ACM.

[39] J. Gray. Notes on Database Operating Systems. InOperating Systems: An Advanced

Course. Sprinter-Verlag, 1979.

[40] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques, pages 677–

680. Morgan Kaufmann, 1993.

[41] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Tech-

niques, and Applications.IEEE Data Eng. Bull., 18(2):3–18, 1995.

[42] H. Gupta and I. S. Mumick. Selection of Views to Materialize in a Data Warehouse.

IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

[43] P. Gupta, N. Zeldovich, and S. Madden. A Trigger-Based Middleware Cache for

ORMs. InMiddleware, 2011.

[44] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. InSIGMOD

Conference, pages 47–57, 1984.

[45] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP Through the

Looking Glass, and What We Found There. InSIGMOD, pages 981–992, 2008.

107

www.manaraa.com

[46] Oracle Inc. Triggers, Packages, and Stored Procedures,

http://docs.oracle.com/html/B1602201/ch3.htm.

[47] A. Iyengar and J. Challenger. Improving Web Server Performance by Caching Dy-

namic Data. InIn Proceedings of the USENIX Symposium on Internet Technologies

and Systems, pages 49–60, 1997.

[48] R. Johnson. More Details on Facebook Outage of Thursday,Sept. 23,

2010, http://www.facebook.com/notes/facebook-engineering/more-details-on-todays-

outage/431441338919, 2010.

[49] H. Kung and J. Robinson. On Optimistic Methods for Concurrency Control. ACM

Transactions on Database Systems, 6, June 1981.

[50] A. Labrinidis and N. Roussopoulos. WebView Materialization. In Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data, May 16-18,

2000, Dallas, Texas, USA, pages 367–378. ACM, 2000.

[51] A. Labrinidis and N. Roussopoulos. Exploring the Tradeoff Between Performance and

Data Freshness in Database-Driven Web Servers.The VLDB Journal, 2004.

[52] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent Mid-Tier Database

Caching in SQL Server. InICDE, pages 177–189, 2004.

[53] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t Settle for Even-

tual: Scalable Causal Consistency for Wide-Area Storage withCOPS. InSOSP, 2011.

[54] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B.G. Lindsay, and J. F.

Naughton. Middle-Tier Database Caching for e-Business. InSIGMOD, 2002.

[55] memcached. Memcached, http://www.memcached.org/.

[56] D. Menasce and R. Muntz. Locking and Deadlock Detection in Distributed Databases.

In Third Berkeley Workshop on Distributed Database Management and Computer Net-

works, 1978.

[57] Microsoft. Using Query Notifications.http://msdn.microsoft.com/en-us/

library/ms175110(v=sql.90).aspx.

108

www.manaraa.com

[58] Microsoft. Working with Query Notifications, http://technet.microsoft.com/en-

us/library/ms130764(v=sql.110).aspx, 2014.

[59] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialize View Selection

and Maintenance Using Multi-Query Optimization. InProceedings of ACM SIGMOD,

May 2001.

[60] MongoDB. Replica Set Oplog, http://docs.mongodb.org/manual/core/replica-set-

oplog/.

[61] Microsoft Developer Network. Using Session Context Information, SQL Server 2008

R2, http://msdn.microsoft.com/en-us/library/ms189252.aspx.

[62] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling

Memcache at Facebook. InPresented as part of the 10th USENIX Symposium on

Networked Systems Design and Implementation, pages 385–398, Berkeley, CA, 2013.

USENIX.

[63] Oracle. Database Change Notification.http://docs.oracle.com/cd/

E14072_01/java.112/e10589/dbchgnf.htm.

[64] Oracle. Using Continuous Query Notification.http://docs.oracle.com/cd/

B28359_01/appdev.111/b28424/adfns_cqn.htm.

[65] Oracle. PL/SQL Packages, http://docs.oracle.com/cd/a9763001/ ap-

pdev.920/a96624/09packs.htm, 1996.

[66] D. A. Patterson. A Simple Way to Estimate the Cost of Downtime. InLISA, volume 2,

pages 185–188, 2002.

[67] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov. Transactional

Consistency and Automatic Management in an Application DataCache. InOSDI.

USENIX, October 2010.

[68] M. Rajashekhar and Y. Yue. Twitter memcached (Twemcache) is version 2.5.3,

https://github.com/twitter/twemcache/releases/tag/v2.5.3.

109

www.manaraa.com

[69] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable Content-

Addressable Network. InProceedings of the ACM Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications, pages 161–172,

August 2001.

[70] D. Reed. Naming and Synchronization in a Decentralized Computer System, Ph.D.

thesis, Department of Electrical Engineering and Computer Science, MIT, 1978.

[71] D. Rosenkrantz, R. Stearns, and P. Lewis. System Level Concurrency Control for

Distributed Database Systems.ACM Transactions on Database Systems, 3, June 1978.

[72] K. Ross, D. Srivastava, and S. Sudarshan. Materialized View Maintenance and Integrity

Constraint Checking: Trading Space for Time. InProceedings of ACM SIGMOD, May

1996.

[73] N. Roussopoulos. View Indexing in Relational Databases.ACM Trans. Database Syst.,

7(2):258–290, 1982.

[74] N. Roussopoulos. Materialized Views and Data Warehouses. SIGMOD Record,

27(1):21–26, 1998.

[75] P. Roy, K. Ramamritham, S. Seshadri, P. Shenoy, and S. Sudarshan. Don’t Trash your

Intermediate Results, Cache ’em.CoRR, cs.DB/0003005, 2000.

[76] P. Saab. Scaling memcached at Facebook, http://www.facebook.com/note.php?noteid=

39391378919, Dec. 2008.

[77] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional Storage for Geo-

Replicated Systems. InSOSP, 2011.

[78] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications. InACM SIGCOMM, pages

149–160, San Diego, California, August 2001.

[79] M. Stonebraker and R. Cattell. 10 Rules for Scalable Performance in Simple Operation

Datastores.Communications of the ACM, 54, June 2011.

[80] The TimesTen Team. Mid-Tier Caching: The TimesTen Approach. InProceedings of

the SIGMOD, 2002.

110

www.manaraa.com

[81] Terracotta. Ehcache, http://ehcache.org/documentation/overview.html.

[82] R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple

Copy Databases.ACM Transactions on Database Systems, 4, June 1979.

[83] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The Anatomy of the Facebook

Social Graph.CoRR, abs/1111.4503, 2011.

[84] W. Vogels. Eventually Consistent.ACM Queue, 6(6):14–19, 2008.

[85] W. Vogels. Eventually Consistent.Communications of the ACM, Vol. 52, No. 1, pages

40–45, January 2009.

[86] G. Whalin, X. Wang, and M. Li. Whalin memcached Client Version 2.6.1,

http://github.com/gwhalin/Memcached-Java-Client/releases/tag/release2.6.1.

[87] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. Caching Strategies for Data-

Intensive Web Sites. InVLDB, pages 188–199, 2000.

111

