TRANSPARENT CONSISTENCY IN CACHE AUGMENTED DATABASE
MANAGEMENT SYSTEMS

by

Jason Yap

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)
May 2014

www.manharaa.com

Abstract

Cache Augmented Database Management Systems (CADBMSs) enhameg-the
formance of simple operations that exhibit a high read to write ratio, e.g., otitera
social networking actions. They are realized by extending a data stcheasua Rela-
tional Database Management Systems (RDBMS) with a Key Value Store (KA 8)e
time of writing, memcached is a popular in-memory KVS in use by a number of kttern
service providers such as Facebook, YouTube, Wikipedia and others

A key insight of CADBMSs is that query result lookup using the KVS is signif
icantly faster than query processing using the RDBMS. A challenge is honato-
tain these query results consistent in the presence of updates to the ROBW&'s
CADBMS solutions require a developer to design, implement, debug, and imainta
software to address this challenge. This dissertation presents noigi desisions to
realize physical data independence that hides the details of the stonagarst(KVS
or RDBMS) from applications and their developers. These designs sintpéfgom-
plexity of application software to expedite their development life cycle.

The proposed designs can be categorized into two groups. The &tgi grevents
race conditions that cause the KVS to produce stale data. Our primarjbcioin here
is the 1Q framework and its simple programming model that employs Inhibit (I) and
Quarantine (Q) leases to provide strong consistency. We describertipatbility of
the leases when the KVS is either invalidated or refreshed in the preskemgédates to
the RDBMS.

The second group includes transparent techniques that invalidateytivalke pairs
of the KVS in the presence of updates to the RDBMS. Our primary contribugion
the SQL Query to Trigger translation (SQLTrig) technique. It providesagh@ication
developers with the SQL query language and observes the perforraahaacements
of a KVS without requiring additional software. It intercepts the querissad by an
application and authors software in the form of triggers that describetethgate of
the query. It registers these triggers with the RDBMS prior to inserting tleeygand
its result set as a key-value pair in the KVS. An insert, delete, update codhtmdine
RDBMS invokes the trigger to compute the query (key) whose result s&ig) has
changed. The trigger invalidates this key-value pair from the KVS in addimnal
manner.

We describe a software prototype that embodies both the SQLTrig techamqiibe
IQ framework. We use a social networking benchmark to compare thistppetavith
a non-transparent consistency technique where the developer xtendpplication

1

www.manaraa.com

software to maintain key-value pairs consistent with the relational data. @tteesults
demonstrate that both provide comparable performance.

www.manharaa.com

Acknowledgements

I would like to extend my deepest gratitude to the many people who have helded a
supported me over the years in the road towards completing my Ph.D.

First and foremost, | would to thank my advisor, Shahram Ghandehahzéat his
wisdom and guidance. | have learned a great deal throughout thig wiacess and |
thank him for sharing his time, experience, and advice so freely.

I would also like to thank the members of my guidance committee, Nenad Medvi-
dovic, Leana Golubchik, William G. J. Halfond, and Francois Bar. Theidlieek and
advice was greatly beneficial in improving my research. My time at the ComButer
ence department of the University of Southern California has been aupéeand has
provided me with a great environment that fostered my research andungdane to
some very brilliant people.

| offer my gratitude to Oracle Inc. for supporting my research with anastricted
cash gift. Our collaboration produced many fruitful ideas and helped apd shape
my research direction. | would particularly like to thank Dieter Gawlick foraspead-
ing the effort as well as Srinivas Vemuri and Lakshminarayanan Chideanldor their
technical insight into Oracle.

| am greatly appreciative of Sumita Barahmand from the Database Labofato
her help and friendship over the years. Always willing to help with evergtliltom
practicing presentations to discussing ideas, her help was a great boog chy time
at the lab. | would also like to thank other past and present reseamhibies Database
Lab, Nasser Alrayes, Reihane Boghrati, Litao Deng, Jorge GonZatemor Gorman,
Showvick Kalra, Lakshmy Mohanan, Neeraj Narang. All of whom heoaborated
with me or helped me in many ways and made the lab a better place.

Last but certainly not least, | would like to thank my family. | would like to thank my
parents for their love and support and always encouraging me togorg@mbitions.
My late brother, Jeffrey, will forever be missed. He was one of my gséateurces of
awe and inspiration while | was growing up and | am thankful that he eaged me
to enter the field of computing in the first place. | would also like to extend myedtep
gratitude to my uncle and aunt, David and Veronica, for very gracioudyiging a
place to stay and treating me so well during my time here.

Thank you to all my friends, family, collaborators, colleagues and psofss | am
forever indebted to you for all the help | have received and know thsidissertation
would not have been possible were it not for all of you.

www.manaraa.com

Contents

Chapter 1 Introduction 10
1.1 Extending CADBMS Technology 13
1.2 ReadersGuide 14

Chapter 2 Related Work 16
2.1 Consistency 17
2.2 Materialized Views and Key-ValuePairs 19

Chapter 3 System Architectures 23
3.1 Client Server Architecture 23
3.2 Shared Address Space Architecture 29

Chapter 4 Consistency 30
41 Gumball 30

4.1.1 Gumball Implementation 32
4.2 1QLeases e e 34
421 OVEIVIEW o i e e e e e e 36
42.2 Invalidate 40
423 Refresh 44
424 Anlimplementation 47
425 Evaluation 51

Chapter 5 Cache Consistency Techniques 55

5.1 Non-transparent Consistency Techniques 56
5.1.1 Application Developer Consistency (ADC) 56
5.1.2 RDBMS Trigger (Trig) Driven 56
5.1.3 Synthetic 57

5.2 Transparent Consistency Techniques 58

5.3 Query Change Notification (QCN) 8 5

www.manharaa.com

5.3.1 Query Registration And Notification 60

5.4 Dynamically Generated Triggers (SQLTrig) 61
5.4.1 Exact match selection predicates 63
5.4.2 Equi-join predicates with one or more exact-matchcin predicates 65
5.4.3 Logical “or” Connectivity 67
5.4.4 Simple Aggregates 69

5.5 SQLTrig Implementation 70
55,1 SQLTrigClient 71
552 SQLTrigServer e 74

5.6 Evaluationof QCN 76
5.6.1 RAYS and a Social Networking Benchmark 76
5.6.2 Software developmenteffort 79
5.6.3 Processingtimeandstaledata 79

5.7 Evaluation of SQLTrig 28
5.7.1 BG Social Networking Benchmark 83
5.7.2 Sizeofkey-valuepairs 85
5.7.3 SocialActionRating, 85

Chapter 6 Correctness of SQLTrig 89
6.1 Properties 89
6.2 Invariants 90

Chapter 7 Future Research 93

7.1 Scalability of the CacheLayer 93

7.2 DataAvailability 79
7.2.1 ProposedSolutions 99

7.3 1Q Framework Extensions 011

7.4 Supporting Additional Query Types With SQLTrig 101

7.5 SQLTrig In Other Environments 102

www.manharaa.com

List of Figures

1.1
1.2

1.3

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Throughput of 5 different systems with BG benchmark. 12
Throughput and % stale reads observed with Time-TofLiVe) based con-
sistency as a function of the TTL value. Application and §agbased con-

sistency are also shown for comparison. 13
Decades of database technology. 14
Cache augmented RDBMS architecture. 24
Conceptual Architecture as seen by the developer. 28
Physical Architecture as implemented by the SQLTrigngavork. 28
Physical Architecture as implemented by the SQLTrigveavork. 29

Two interleaved processing 615,,. andC'S,,,, referencing the same key-

value pair. e 31
Snapshot isolation enables Session 2 to compute ard anstle value in

the KVS. . . . e 41
Deletion of key-value pairs after transaction comminpoesults in an in-
consistency window. 41
CADBMS results in dirty reads with refresh when an impadteg-value

pair is updated prior to transactioncommit. 44
Two logical operations race with one another to upda&a&IbBMS correctly

only to result in a KVS state that violates the freshnessentgp 45
The RDBMS transaction of Session 2 is aborted, rolled bacH, retried
because its QaC requests a Q lease that conflicts with thenex@ lease of
Session 1. . .. 47
Expired leases cause refresh to produce stale data. 50

www.manaraa.com

5.1 A query instance to retrieve the friends of Member witkrigs=1 and its

corresponding query template. L oL 61
5.2 Pseudo-code for processing join predicates. 66
5.3 Parse tree for a query containing an “or” predicate. 67
5.4 The components comprising the SQLTrig architecture. 71
5.5 Comparison of alternative approaches100 msecf=0, w=1,000,u=1%,

n=10,000. 80

5.6 SQL-X database design with no images. Two records in tlemds table
represents the friendship between two members. The und@rittribute(s)
denote the primary key of a table. Attributes with a hat deribe indexed
attributes. 84

7.1 Distribution of the key space across 3 KVS nodes (C1, C2,G8)din a
cluster. The master node keeps track of all KVS nodes. 94
7.2 Insertprocedure. 59

www.manharaa.com

List of Tables

4.1 GT enabled delete, get, and put pseudo-code. All tinmapaare local to
the servercontaining;, —v;. e 33
4.2 Two techniques to maintain the key-value pairs of the K\@8sistent with
updates to the tabular datainthe RDBMS. 5 3
4.3 List of terms and their definitions. 36
4.4 Alternative actions and their implementation with macieed and a SQL
SYStEM. . . . e e e 37
4.5 Presence of KVS operations with invalidate and refresh. 38
4.6 Pseudo-code of two interactive social networking astionplemented as
sessionswithnoleases. oo 38
4.7 Compatibility matrices of I/Qleases. 43
4.8 Two alternative implementations of the Invite Friendssen of Figure 4.6.a
usingQaCand SaRcommands.. 52
4.9 Number of rejected write leases (QaC calls) with twontlimplementations
of Section4.2.4. e 52
4.10 Percentage of unpredictable data using refreshiiiatal with Twemcache
by itself and Twemcache extended withthe I/Q leases. 53
4.11 SoAR using refresh with Twemcache by itself and Twemeaxtended with
thel/Qleases. 54

5.1 Marshalling of YCSB Workload C ResultSet with SQLTrigamglal 74

5.2 Characteristics of two different sequences of pagesvasiid clicks with
RAYSusinganemptycache. 77

5.3 Workload of parameters and their definitions 77

www.manaraa.com

5.4 Processing time (Seconds) of Browse and Toggle Sequete®80 msec,

0=0,w=1,000,u=1%,n=10,000. 81
5.5 Four mixes of social networking actionswithBG. 82
5.6 Size of key-value pairs produced by different BG actians.. 84
5.7 Keys invalidated by SQLTrig’s authored triggers whewmgaissing a BG write

action. 86

5.8 SOAR, actions per second, of SQL-X by itself, extendedh Wivemcache
that is maintained consistent using developer providethsog, and using
SQLTrig. Results are shown for two different social graphsststing of
10,000 members and 100,000 members. Each social graplstsoosiL00
friends per member and 100 resources per member. 87

7.1 CacheServerstable.o 6 9

www.manharaa.com

Chapter 1
Introduction

In the era of no “one-size-fits-all’, organizations extendaabase management system
(DBMS) with a key-value store (KVS) to enhance the velocitgiohple operations that ei-
ther read or update a very small amount of big data. The regudache augmented database
management system, CADBMS [38], targets applications thdbqe simple operations
and exhibit a high read to write ratio. An example applicai®social networking with in-
teractive actions such as browse a profile, view a friendsuece (say a picture) and post a
comment on it, generate a friend request and accept one tlaeis §12]. According to [14],
92% of user activities in social networking applications segad-only browse operations. A
popular in-memory KVS is memcached [55], in use by well kndmternet destinations such
as YouTube and Wikipedia. Its simple interface provides gat, and delete of key-value
pairs computed using data in the DBMS.

A CADBMS deployment assumes query result look up is both fastdrmore efficierit
than executing the query. A developer utilizes a CADBMS by ifiging code segments in
an application that manipulate read intensive data, &g cdde to compute the profile page
of a user. Execution of this code segment with an input, itsgoroduces an output, the
HTML fragment pertaining to the user profile. This outputasmed thesalueand identified
using a uniquekey. This key is typically constructed using the input to the esggment,
e.g., “Profile”tuser-id. Next, the developer extends thdecto look up the key prior to
executing the code segment with its input. If the KVS retuires value then the value is
used without executing the code segment. Otherwise, the segment executes and the
resulting key-value pair is inserted in the KVS for use byifatreferences. A code segment

lperforms less wasteful work [45] .

10

www.manaraa.com

may execute several queries and perform arbitrarily coxggbglication logic. As longs as it
is deterministic, a key-value pair identifies a unique irtpuhis code segment and its unique
output.

To demonstrate performance enhancements obtained usin@M&DFigure 1.1 shows
the throughput of several different systems with a social networking bematk named
BG [12]. The workload consists of a mix of aforementioned abeetworking actions with
1% of actions updating the database. Target systems include

1. SQL-X: A commercia relational database management system (RDBMS).

2. A Client-Server (CS) CADBMS consisting of SQL-X extended witamcached [55]
server version 1.4.2 (64 bit). In the presence of updatdsa®RDBMS, two different
approaches to maintain the cached key-value pairs consig&ge considered: Either
using application software or RDBMS triggers, see Sectiorids. tletails.

3. A Shared Address Space (SASADBMS with application consistency: SQL-X ex-
tended with Ehcache [81] and application software to mairkey-value pairs consis-
tent.

4. MongoDB, a document store, representing a NoSQL soluBer.[24] for a taxonomy
of NoSQL systems.

While SQL-X struggles to process 224 actions per second, ertnded with mem-
cached, it can process almost 6,000 actions per secondcligheahances the performance
of SQL-X 70 folds to provide a throughput of more than 15,86flces per second. Though
MongoDB outperforms SQL-X, its single node performanceoigdr than all CADBMSs.
One may incorporate the principles of a CADBMS in MongoDB (oy &loSQL solution)
to enhance its single node performance. This complemeatalitity of these systems to
scale out.

A challenge of using a CADBMS is how to maintain the key-valuegpeonsistent with
both incremental and bulk updates to the database. One xaydaize today’s approaches

2All performance numbers reported here employ a BG socialerking database consisting of 10,000
users with 100 friends per user and 100 resources per usenurhber of threads used to generate the workload
is 100 and no service level agreements, i.e., no values leratde response times] and the percentage of
requests that must observe this response timeSee [12] for detalils.

3Due to licensing restrictions, the identity of this comniar®BMS is not disclosed.

4Chapter 3 details the client-server and shared address §dBMS architectures.

11

www.manaraa.com

Throughput (Actions / Second)
TBODD e

14000 Application

Consistency
12000 (15,864

actions/ sec)

CSCADBMS
Trigger
Consistency
(5,773 actions / sec)

10000 CSCADBMS

Application

8000 Consistency
(5,768 actions / sec)

6000

4000 b [DN |
MongoDB
2000 20 sf,_!_ x/ . I (1,102 actions/ sec)”
actions/ sec
0

Figure 1.1: Throughput of 5 different systems with BG benctkma

into time to live and invalidation techniques. With the farmthe developer extends the ap-
plication to provide a Time To Live, TTL, for each key-valuagipinserted in KVS. The KVS
invalidates a key-value pair once its TTL expires, causiaglesequent reference for it to ob-
serve a miss, re-compute the value and insert it in the KM§urei1l.2 shows the throughput
and amount of stale data observed with a client-server CADBSA_(X using memcached
with Whalin client) with different TTL values. Its experimih setting is identical to the
one shown in Figure 1.1 except for the use of TTL. The x-axiBiglire 1.2 shows different
TTL values, ranging from 30 seconds to 5 minutes. As TTL iases, the throughput of the
CADBMS is enhanced due to a higher KVS hit rate. It also causesgel percentage of
reads to observe stale data because the key-value pairai@asd inconsistent with their
tabular representation in SQL-X. As a comparison, the figise shows the throughput and
the amount of stale data produced by the alternative teabsithat invalidate data.

One may implement an invalidation based technique in eitherapplication or the
DBMS. With the former, the developer identifies code segmehtke application that up-
date the database and extends them to either invalidatesihefor propagate the change to
the key-value pairs in the KVS. With the latter, the datakedministrator authors triggers
(notification mechanisms) to update the KVS. These two tiectas are implemented using
SQL-X and Figure 1.2 shows they provide throughput compartabT TL of 5 minutes with
a significantly (several orders of magnitude) lower amodistale data. The two techniques
provide comparable performance, see the two CS CADBMS bargguré&il.1. Applica-

12

www.manaraa.com

Throughput (Actions / Second)
6000 T

5000 /
4000 /
3000

2000 Throughpuy
1000

O - "'t 7T I

0 30 60 90 120 150 180 210 240 270 300

TTL value (seconds)

Figure 1.2: Throughput and % stale reads observed with Tioakeive(TTL) based consis-
tency as a function of the TTL value. Application and Trig@pased consistency are also
shown for comparison.

tion and trigger consistency techniques produce some g&déebecause they suffer from
race conditions between writes to SQL-X and memcached.€ltaes conditions are further
elaborated on in Chapter 4.

1.1 Extending CADBMS Technology

Today's CADBMSs are in their infancy and resemble the datasite applications of 1970s
that existed at the dawn of DBMSs, see Figure 1.3. They pduysical data independence
that hides the details of the storage structure from uselicapipns. In essence, when a
CADBMS employs a transactional DBMS, the application devalapghors software to
maintain the normalized tables of the DBMS (magnetic disk@®f0s) consistent with the
un-normalized key-value pairs stored in a KVS (main memdr{3¥0s). Physical data in-
dependence is desirable because it enables a CADBMS to higitssagtDBMS and KVS
from the application developer to provide functionalitiegh as transparent cache consis-
tency (maintaining the content of KVS and DBMS consistenhwite another seamlessly),
dynamically adjust the content of KVS to enhance overallesysperformance, and support
different forms of consistency ranging from weak to stromgis is beneficial and superior
to today’s state of the art for two reasons. First, it redubescomplexity of application

13

www.manaraa.com

Developer 1 g
éz o
Application
programs w "
& éZ'-
0|9

Developer 2 Application
programs

s 4 Key V;Iue
7

Store (KVS)
/ s
CADBMS|~ *=

=

DBMS

Server

1.3.a) Prior to RDBMSs. 1.3.b) CADBMSs today. 1.3.c) Future CADBMS

Figure 1.3: Decades of database technology.

software and expedites software development life cyclgamering application developers
to introduce features more rapidly at reduced costs.

Second, it enhances robustness of the deployed systemmnpirg software assump-
tions that compromise availability of the data. An exammgmes from Facebook where, due
to dependence of data on different physical forms of stqrageftware component was au-
thored with the assumption that configuration data from #whe is obsolete and erroneous
while its counterpart in the database is correct. Every tini&e component observed erro-
neous data from the cache, it would query the database &shefine cache with correct data.
On September 23, 2010, erroneous configuration data wasddsato the database, caus-
ing this component to overwhelm the DBMS with repeated qedaethe correct data [48].
Physical data independence would have avoided both thedlagsamption and the resulting
2.5 hour down time with a price tag of millions of dollars.

1.2 Reader’s Guide

The primary contribution of this dissertation are two framweks to realize physical data
independence in CADBMSs, see Figure 1.3.c. The first, named'&§Llis a transparent
technique that utilizes the structure of the SQL languagautior triggers on the fly to
maintain the KVS consistent in the presence of updates tBRBBMS. The second, named
the 1Q framework, prevents race conditions between the Kibthe RDBMS that cause
them to reflect a different value for a data item, i.e., instate data in the KVS.

This dissertation is organized as follows. Chapter 2 prestet current state of the art
in transparent caches and alternative ways to maintairistensy between the KVS and the
RDBMS. Chapter 3 describes two different architectures tazea CADBMS. Chapter 4

14

www.manaraa.com

describes the Gumball technique and the 1Q framework as liwmatives to prevent race
conditions that insert stale data in the KVS. The IQ framéw®a successor to the Gumball
technique and handles a wider variety of race conditionkidicg those attributed to the
use of MVCC [16] and snapshot isolation [77]. Chapter 5 presalt¢rnative techniques to
maintain the KVS consistent in the presence of updates BB®MS, introducing SQLTrig
as the final decision. Chapter 6 presents the correctnessg/stenrsthat utilizes SQLTrig in
combination with the 1Q framework to cache queries and thesult sets. We present our
conclusions and future research directions in Chapter 7.

15

www.manharaa.com

Chapter 2

Related Work

Cache augmented RDBMSs have been an active area of researei88@s [2, 3, 5, 4,
17, 27, 32, 33, 50, 52, 43, 47, 67, 87]. The term CADBMS is usecktterrto a subset
with the following characteristic. First, the cache mugi@ort simple insert, get and delete
operations [8, 67]. There exist complex caches with theitghib process SQL queries,
e.g., TimesTen [80], DBProxy [3], DBCache [17, 18], Cache TafdsMTCache [52],
Ferdinand [34]. While these fall beyond the focus of SQLTtiggse systems may use the
principles outlined by SQLTrig to minimize the amount of tsadre required to maintain
their cache consistent with a RDBMS.

Second, SQLTrig is designed for middle-tier [47, 27, 87,&3,51, 5, 4, 67, 43] caches
at the same abstraction as the RDBMS where security and profazgntent is guaranteed
by the application and its infrastructure. It does not applproxy caches [43, 23, 32] that
are external to the application.

Early transparent cache consistency techniques invatidached entries at the granular-
ity of either table change or combination of table and colwmange [4]. These are suitable
with web sites that disseminate information (e.g., stockketaticker prices [51], results of
Olympic evens [27]) where a table is the basis of a handfulbche entries. They become
inefficient with applications such as social networking veheach row of a table is the basis
of a different cached entry and there are many (billions ofys and corresponding cache
entries. With these techniques, an update to a row wouldidata many (billions of) cached
key-value pairs even though only a single key-value paiukhbe invalidated.

TxCache [67] is a transparent caching framework that suppgmahsactions with snap
shot isolation. It is designed for RDBMSs that support mudision concurrency con-

16

www.manaraa.com

trol [16], e.g., PostgreSQL, and extends them to producaliohation tags in the presence
of updates. A generated tag is based on a query whose resulted to generate a cached
key-value pair. The tag is for one attribute value of a taBRBLEKEY). This works when
the workload of an application consists of simple exactemaelection predicates. Details
of how this technique works for queries with join predicates not clear. SQLTrig can be
adapted to support such queries in TxCache. Moreover, SQktan be used with all SQL
RDBMSs that support triggers because it does not either manlifyequire pre-specified
concurrency control technique from the RDBMS.

CacheGenie [43] employs an Object-Relational Mapping(ORBHhEwork such as Django
to generate the SQL queries, object instances stored irattteecand DBMS triggers to in-
validate cached objects. It can perform this for a subsetiefygpatterns generated by ORM.
The difference between SQLTrig and CacheGenie are as fallbwst, SQLTrig generates
triggers based on the issued SQL queries and not an ORM dserig hus, SQLTrig is
applicable for use with both ORM and non-ORM frameworks. Sd¢avhile CacheGenie
caches the results of a query, SQLTrig supports both quenitrand semi-structured data
caching.

2.1 Consistency

The 1Q framework embodies a concurrency control algorithat juarantees serial schedule
of sessions. There exists a vast number of concurrencyat@hgorithms, most of which are
based on either locking [56, 39, 71], optimistic or comnmté validation [11, 25, 49], and
timestamps [70, 82]. See [15] for a survey of these algostiamd how one may combine
them. IQ most closely resembles locking and least simildhéotimestamp protocols (not
discussed further) because it produces a serial schedsiel lmm how sessions compete to
acquire leases instead of the order in which they are issu#tetsystem. Similar to two-
phase locking (2PL), a session has a growing and a shrinkiagepwith 1Q. Its growing
phase is prior to the RDBMS transaction commit when it acquteeleases. Its shrinking
phase is after the transaction commit point when it appteshanges to the KVS and re-
leases its leases. 1Q is different than lock based protdmedsause it is non-blocking and
deadlock free.

IQ is also similar to the optimistic concurrency control (OC&gorithm [11, 25, 49]
technique as it has a read and a write phase. Its write phasesaafter the RDBMS transac-

17

www.manaraa.com

tion commit and, similar to the write phase of OCC, succeedaywDuring its read phase,
IQ obtains leases as it validates the values read from the KIS concept is missing from
OCC. Moreover, 1Q lacks the explicit validation phase of OCCtdad, it rolls a session
back during its read phase once it detects a conflict usin@itsases.

Two studies most relevant to our focus include TxCache [6@d]thr leases of [62]. We
describe these in turn. TxCache [67] is a transparent cadhamgework that extends an
RDBMS with additional software to produce invalidation tagdhte KVS. These tags are
generated by the RDBMS updates and cause the KVS to generatengeof the key-value
pairs to implement snapshot isolation with the KVS. Our osgad framework maintains a
single version of a key-value pair and requires no softwaenges to the RDBMS. More-
over, TxCache’s tags are designed for the invalidate tecienidt does not consider the
refresh technique and does not propose use of leases tal@ivong consistency.

In [62], Facebook describes how it uses a lease to avoid uabtésrace conditions that
cause the KVS to produce stale data with an invalidate tecieni In addition, the same
lease is used to prevent thundering herds; a burst of rexjabserving a KVS miss for the
same key and querying the RDBMS for the same result. We namezhéak’s lease as
the read lease and detailed it in Section 4.2.2. It is imptegetein the Twitter memcached
version that we evaluated in Section 4.2.5 and showed taipeostale data, see Table 4.10.
Our proposed | lease is identical to leases of [62]. Our fraonk is different because it
introduces the Q lease and defines its compatibility withl flease to reduce the amount of
stale data down to zero. Moreover, our framework suppodsefresh technique to update
the KVS. Our implementation of IQ leases enables an appicéd use both invalidate and
refresh simultaneously.

IQ is designed to provide strong consistency within a dataeze One may deploy the
CADBMS solution in different data centers with replicatedadaee [62] for an example. To
maintain the replicated data consistent, one may use aitpehsuch as parallel snapshot
isolation [77], eventual consistency [85], per-recorddiime consistency [28], causal+ [53]
and others. While these techniques focus on network pangiti® focuses on normal mode
of operation and use of leases to prevent undesirable rawdtioms. Our objective is to
satisfy the freshness property and provide strong comsigtevith no modification to the
RDBMS software.

There are mid-tier caches that process SQL queries [3, 546212, 80]. These caches
maintain fragments of the RDB to distribute processing ofriggeacross the caches and

18

www.manaraa.com

backend servers intelligently. The cached data is maietagonsistent with the changes to
a backend server using a variety of techniques such as usatefialized views with asyn-
chronous data replication [54], computing changes andsigthem to the caches [3, 18],
shipping log records [52], and invalidation of the impacteds [2]. Our target CADBMS
architecture is different as the KVS maintains unstruatikey-value pairs. It has no abil-
ity to process SQL queries and provides a simple interfagesihpports commands such as
get and set, see second column of Table 4.4. Thus, the KVSrauaacur the overhead
of query processing estimated at a high percentage of useftk performed by today’s
RDBMSs [45].

2.2 Materialized Views and Key-Value Pairs

A key-value pair used in CADBMSs shares similarities with aenatized view, MV, of a
RDBMS. Both involve maintaining a separate physical copy ofdi in order to enhance
the velocity of data intensive applications. This sect®priesented as a series of questions
to help describe each approach and distinguish betweewthe t

What is a view?

Aview is a virtual table defined using an expression thategfees other tables in a relational
database management system (RDBMS). It is re-computed e@veratquery references the
view. A view might be authored using SQL, relational algepta], datalog and others [21].
This writing assumes SQL.

What is a materialized view?

A materialized view (MV) stores the tuples of the view in thegabase. One may construct
index structures on the materialized view. Hence, accasdbg view are much faster than
re-computing it. Typically, a database administrator (DBAalyzes the workload of an ap-
plication to authors MVs and their indexes. For an exampté data warehousing queries
see [74]. This study shows MVs enhance the performance oftores significantly. Se-
lecting which virtual views to materialize, the view seleot problem, has been studied
extensively [73, 41, 42].

19

www.manaraa.com

It is time consuming for a RDBMS to materialize a view and itseixels. Hence, in the
presence of updates to the base tables referenced by a M¥iat efficient to drop the MV.
Instead, MVs are maintained up to date incrementally [415%2 This approach computes
changes to the MV and applies them to the MV to bring it up tedat

A query optimizer may employ a MV to process SQL queries tlmahdt reference it
explicitly [75, 59]. Moreover, a physical database desigaiger may recommend index
structures on a MV as itis a table [1, 20].

What is a Key-Value Store (KVS)?

A KVS maintains key-value pairs consisting of a unique idfeart(key) associated with some
arbitrary data (value). It provides a simple interface sastput, get, and delete to store,
retrieve, and delete key-value pairs. It provides littleorability to interpret its value with
no query mechanism for the content of the values [24, 79]. putar KVS is memcached
in use by many popular Internet destinations such as Youdodé/Nikipedia.

What is a Cache Augmented DBMS (CADBMS)?

Cache Augmented Database Management System, CADBMS, systenas amportant
class of distributed systems, targeting applications withigh read to write ratios. These
systems augment a RDBMS with a KVS to enhance overall velo€igperations that re-
trieve and process a very small amount of the entire dataze, b, 4, 17, 27, 32, 33, 50,
52, 43, 47, 67, 87]. They may materialize either the results query (key=query string,
value=result set computed by the RDBMS) or a code segment (kegee identifier for the
code segment constructed using its input, value=outpute@ttbde segment) as key-value
pairs in the KVS. This enhances performance because a cackeip is much faster than
executing either a SQL query or a code segment that issuess@ueries. In the presence
of updates to the tabular data, a CADBMS solution may maintercached key-value pairs
consistent transparently [5, 4, 27, 32, 33, 43, 67].

How are materialized views similar to cached key-value pas?

Both MV and key-value pairs store a separate physical coplgefdabular data. This copy
must be maintained consistent with the base tables. The RDBNM®natically maintains

20

www.manaraa.com

MVs consistent and serialize transactions to provide ACI@pprties, e.g., by using the RE-
FRESH ON COMMIT. Similarly, transparent caching techniquesntain key-value pairs
consistent in the presence of updates to the RDBMS. For exampache [67] imple-
ments snap-shot isolation and one may configure SQLTrig péeiment serial schedules.

Both MVs and key-value pairs might be used to enhance veladityata retrieval by
approximating the final answers of a posed query. For exaraplapplication may utilize
REFRESH ON DEMAND option when authoring a MV and update it pgidally. Queries
processed using such views may observe stale data. SindafCADBMS system may
incrementally update key-value pairs and cause the apipiicto observe either stale data
[51] or suffer from dirty reads [43].

How are materialized views different than cached key-valug@airs?

MVs and key-value pairs are suitable for different applmatclasses. MVs enhance per-
formance of decision support applications and their OrelAnalytical Processing (OLAP).

KVS and key-value pairs enhance performance of querieg¢ladta very small amount of
entire dataset repeatedly. Thus, one is not a substituténéoother. This is elaborated on
below.

SQL queries used to compute a MV typically retrieve many rolvss not uncommon
to find index structures on a MV to expedite processing of SQerigs that reference it.
In contrast, a key-value pair corresponds to an SQL quera @de segment) that is very
selective (outputs a few values), e.g., retrieve the proffemation of a member of a social
networking site given the users login and password. A CADBM&enes the performance
of interactive operations when its key-value pairs are ss®e far more frequently than they
are updated. This is because a key-value look up is fasteptteeessing SQL queries [37].

With a CADBMS, there may exist millions (if not billions) of keyalue pairs pertaining
to different instances of a simple SQL query whose resultscached as key-value pairs
in the KVS. For example, with a social networking applicatieach SQL query issued on
behalf of a member to retrieve her profile might be a key-valiein the KVS. In contrast,
there exists a few (in the order of tens of) MVs authored bytalakese designer to enhance
overall system performance based on a known or expectedaaokk

SQL queries that are the basis of a key-value pair with aioglat CADBMS are much
faster to execute than those that are the basis of a MV with a RBBMis explains why
RDBMSs maintain MVs instead by incrementally updating thenlevBADBMS systems

21

www.manaraa.com

invalidate key-value pairs by deleting and re-computiregh

Finally, a MV is typically created by a human and crafted teafically meet the ex-
pected needs for an OLAP workload. The workload should bevknia advance in order
to use MVs effectively. On the other hand, a CADBMS with a tramept cache generates
key-value pairs dynamically as a workload executes. It doesequire advanced knowledge
of the workload. (When a CADBMS in employed non-transpareiatlguman participates
to identify code segments whose results should be cached.)

Can MVs and key-value pairs co-exist?

MVs and key-value pairs are implemented by different congmé&and may co-exist. While
a RDBMS implements MVs, a KVS implements key-value pairs. Tlune may use the
RDBMS of a CADBMS to author MVs to enhance processing of OLAP aserAnd use its
KVS to cache the result of OLAP queries in order to expedigepttocessing of those issued
repeatedly. A query optimizer extended with a cache marfagelata warehouses and data
marts was explored in [75]. Extensions of these ideas to a CABRBdVa future research
direction.

Is it possible to use MVs as a substitute for key-value pairs?

MVs are not a substitute for key-value pairs. This is showngithe view profile action of
the BG benchmark [12]. This action is a simple SQL query thiaienees profile information
(a row) of a Member table with 10,000 rows (members). BG issis000 view profile
requests in turn. Each request references a member. Usinghmercial RDBMS, the
average execution time of this query is 2.5 millisecondsonké defines 10,000 MVs (one
for each query) and executes the same workload, the avexagat®n time of each query
increases to 6 milliseconds. Using a CADBMS with a cold cadie alverage execution of
the query is 1.5 milliseconds. A warm cache with 10,000 kal pairs (one per query)
reduces this time to 0.3 milliseconds.

22

www.manaraa.com

Chapter 3

System Architectures

3.1 Client Server Architecture

Figure 3.1 shows the architecture of a typical cache augedd®élational Database Manage-
ment System (RDBMS). The application communicates with the RBBMough a client
(eg. JDBC) and similarly to the cache through its own clienpjdgily through a TCP or
UDP connection. The cache layer can be comprised of multiatdhe nodes, potentially
hundreds of nodes, representing a large memory space.

One example application that utilizes this architectura social networking site, such
as Facebook [76]. The RDBMS serves as a persistent data @pasiat can be queried
or modified under the relational model. When a user makes asédor their profile page,
the application issues one or more SQL queries to the daamasprocesses their results in
order to generate a HTML document that is returned to the user

This on-the-fly generation of data to satisfy requests isrretl to aglynamicweb as
opposed tastaticweb, where data does not change. While static web can easdgdiesd
to improve performance, dynamic web requires a more casegdptoach. With dynamic
web, the data can change between every request produciffgraidi result every time. In
such cases, caching will yield no benefit and could actuddiy she system down due to
overhead.

However, if the underlying data changes infrequently (updates are rare compared
to reads), then the application will produce the same find/ldi document every time the
same request is made. Instead of requiring the applicatiasstie multiple queries to the
database every time, a cache can be used to store this finaLHibPument and serve the

23

www.manaraa.com

Application Server

Application

JDBC Cache
Driver Client

7NN,
W NN\

-
©

RDBMS Cache

Figure 3.1: Cache augmented RDBMS architecture.

request.

In order to do this, the application is modified to be awardnefdache. A developer iden-
tifies a fusion code segmeatS;,,,. in the application that consumes some input to produce
an output.C'S,s. might be complex, consisting of arbitrary loop and branaigpamming
constructs. Each branch may execute a different sequer@®lofjueries depending on the
results of an earlier query in the sequence. The final outpat%.. is a value. This is
associated with a developer specified logical key that nightonstructed using the value
of one or more of the input parameters. The developer ext@€ids,. as follows (Steps 1 to
5 correspond with arrows 1 to 5 in Figure 3.1):

1. Look up the cache using the key corresponding to the caylaesa k;.

2. If the data;, is found in the cache, skip to Step 6. Otherwise, continub ®ieps 3
- 5.

w

. Issue SQL queries based on the application 10g(€ s

SN

. RDBMS returns the query results. The application congriiet HTML page using
the results.

ol

. Store the page a5k into the cache under the key.

24

www.manaraa.com

6. Return the datd; as the resulting HTML page.

By utilizing a cache, the system can skip the multiple queaiesapplication processing
in steps 3 - 4 every time the required HTML page is found in thehe. This helps reduce
the network traffic and the number of round trips required el &s the amount of work that
needs to be done on both the application server and the RDBM&ewdo, when the cache
does not contain the requirég- d; pair, the system incurs the additional communication
overhead of checking the cache and populating it with thesttooted result. This scenario
occurs when: (i) the cache is brought on-line and starts iamapty state, (ii) a previously
storedk;-d; pair was evicted to free up memory on a heavily utilized caohégiii) a previ-
ously stored:;-d; pair was invalidated because the cached copy no longer etatble data
on the RDBMS.

Since the cache holds an independent copy of the data, werea@hange occurs to the
data in the RDBMS, the copy in the cache becomes out-of-synarder to ensure that the
cache produces data that is consistent with the databasspphication developer is required
to author code which explicitly maintains the consistenfife data in the cache. Every time
an update occurs to the RDBMS, the copy of the data in the caciehwilas affected by
this change has to be invalidated. The problem with this @ggr is that the developer is
required to have sufficient understanding of the applicatigic in order to correctly author
the invalidation code. In larger code bases, this appraaelror-prone and can lead to bugs
which affect the entire system. An example of this was Fackbmutage in 2010 which
was caused by an error in their consistency checking saét\v8]. When the application
logic changes, the invalidation code has to be re-authdhew, exposing the software to
more possible bugs. Furthermore, changes to the data masideoof the expected code
path (eg. updates made directly to the database) might noajiteired by the invalidation
logic and result in a cache serving stale data.

The transparent caching techniques, described in Chaptety5pn two mechanisms,
(i) cues from the application to indicate the data dependsraf cached:;-d; pairs and (ii)
notification from the RDBMS when a relevant change is detectBoe cues that can be
used are readily available: the SQL queries which are beisgeid by the application to
the RDBMS. By intercepting these queries through a RDBMS cliemtpper, the system
automatically identifies these queries without additiatenges required to the application
software. The framework keeps track of these dependentiesder to determine which
cache entries are affected whenever a change is detected mlatabase. There are two

25

www.manaraa.com

different mechanisms examined by this study that can betos#etect these changes, Query
Change Notification and Triggers. Further detail on the wagkiand differences between
the two mechanisms are provided in Chapter 5. In both casdsarae is detected at the
RDBMS and a notification is issued to the cache. The cache tlomegses the notification

to determine which cache entries were affected. One thingpte is that it is important
that the notifications and corresponding invalidationssarBne-grained as possible, in order

to avoid unnecessary invalidations of unaffected cachea. daxcessive invalidations will
lower the cache hit rate and thus, lead to poor system peaiocm

The following describes two approaches to realize physiatd independence in CADBMSs:

1. Migrate CADBMS into a mature database technology such as a Rb@ka NoSQL
such as Couchbase [30]), implementing a KVS transparentigdtt a high level lan-
guage such as SQL (or a programmable interface using J3@Ndpresentation of
data).

2. Use an Object-Relational Mapping (ORM) framework such deeHfiate or Django to
embody a CADBMSs as a middleware.

One may migrate a CADBMS into an RDBMS at different abstractioalke It might be
implemented by the query optimizer and execution engineRDBMS [67]. Alternatively,
it might be implemented by the client component of a RDBMS susitsalDBC driver [37].
Below is a description of the latter.

One may extend the JDBC driver of a RDBMS to intercept queriesl@ics up their
(serialized) result set in the cache. If a value is found thendeserialized and returned to
the application. Otherwise, the query is executed usingRDBMS, returning the result set
to the application. To maintain the KVS and the RDBMS constistiemsparently the ex-
tended JDBC driver may utilize query change notification naeedm of a RDBMSs by reg-
istering queries that are the basis of a cached query resyB3d, (key=query, value=result
set). Query change mechanism is a recent feature support®dagcle 11g and Microsoft
SQL Server 2005 and 2008 editions. When an update changemta®ftthe database, the
RDBMS notifies the KVS of those queries whose results have @dhnthe KVS maintains
a mapping of queries to key-value pairs and either invadislat refreshes the impacted key-
value pairs. This technique is not viable today becausehibage notification mechanism
of RDBMSs is in its infancy and suffers from the following liraitons. First, they support
a limited class of queries. None support simple aggregageegi(e.g., count Joe’s number

26

www.manaraa.com

of friends) that are central to diverse applications. Sd¢ctre time to register a query is sig-
nificant and slows down updates so dramatically (tens ofre#)ahat it is difficult to argue
the action is interactive [37]. To address this limitati@n those applications that tolerate
stale data, the CADBMS may perform RDBMS updates asynchronodilig may cause
a transaction to not observe its own update and be unacéetatihose applications that
demand consistent reads. For change notification to be @itgiiblock of physical data in-
dependence, it must evolve to support a larger class of S@tiegmwhile registering queries
(at bursts of thousands per second) and processing RDBMSasgpgiatkly.

With the second approach, the CADBMS will be a pass througlyaihtat directs SQL
gueries either for execution to its RDBMS component or lookrughe KVS. As an example,
CacheGenie [43] consumes high-level description of DjaagddRM framework) objects to
generate SQL queries, object instances stored the KVS (a@ad), and RDBMS triggers
to either propagate RDBMS updates to key-value pairs or iatdithem. CacheGenie frees
the developer from managing the KVS or maintaining it caesiswith the RDBMS. It ob-
serves a factor of 2.5 improvement in throughput for readtiyavorkloads in Pinax (when
compared with the RDBMS). While it is not clear whether this aagh is feasible with all
object descriptions, it is a promising approach towardizew physical data independence.

Once an approach to realize physical data independencentfidd, one may formalize
the interaction between the RDBMS and the KVS to identify fioralities of a CADBMS,
consistency and availability of data, and administrato@d to maintain a deployment. To
elaborate, consider the first approach to physical datapemtence assuming industrial
strength RDBMSs mature to support query change notificatibciezitly. The high level
language of this approach might be SQL. The resulting CADBMY o&e its RDBMS
component to support materialized views to improve perforoe of certain queries. It may
store the result of queries that reference these views agdtag pairs in the KVS, expedit-
ing their subsequent reference.

The SQLTrig framework solves these problems by modifyiregalchitecture to abstract
away the cache as a distinct entity that needs to be sepamsehtained. The developer
can assume that they are interacting with a unified data teppss shown in Figure 3.2.
No custom code needs to be authored to maintain the consystérthe cache as it will
be handled automatically by the framework. Underneath, Bi@Lrealizes the physical
architecture by utilizing transparent caching technigéegure 3.3.

27

www.manaraa.com

Application Server

Application

SQLTrig Client

SQLTrig Server

RDBMS

Figure 3.2: Conceptual Architecture as seen by the developer

Application Server

Application

sQiTrig client @

IDBC
Driver

T Sy
N\

1

RDBMS

Trigger
Registration

SQLTrig Server

Figure 3.3: Physical Architecture as implemented by the B@lframework.

28

www.manaraa.com

Application Server Application Server Application Server

Application Application Application
JDBC JDBC
sQL

Locking and Updates
v

. = Terracotta Server Array

RDBMS

Figure 3.4: Physical Architecture as implemented by the B@lframework.

3.2 Shared Address Space Architecture

An alternative architecture, namethared address spad®AS), requires the KVS to run
in the address space of the application, see Figure 3.4. EralVSs include Terracotta
Ehcache [81] and JBoss Cache [22]. They operate in either-siané or in a distributed
mode. With the latter, a key-value pair might be replicatéuee across a subset or all appli-
cation+KVS instances. The KVS may implement the concepttad@saction to atomically
update all replicas of a key-value in different instances.

When compared with the Client Server architecture, SAS may dtmvn writes in order
to improve the performance of reads. Performance of readshsnced by eliminating
the overhead of retrieving a value across the network, upcessing and deserializing it.
Writes might be slowed down because they must propagaterepditas of a key-value pair
in different KVS instances, see Figure 3.4. When writes are 1I8AS may outperform the
Client Server architecture dramatically (order of magretod more). While the prototype
transparent cache CADBMS was implemented in a Client Servhitacture with SQLTrig,
the same concepts can be applied to a SAS architecture tudakth a transparent caching
layer.

29

www.manaraa.com

Chapter 4

Consistency

4.1 Gumball

In the presence of updates to the RDBMS, a consistency teahigployed either at the
application or the RDBMS may delete the impacted cached kkyevaairs. This delete
operation may race with a look up that observes a cache remgfing in stale cached data.

As an example, consider Alice who is trying to retrieve heafite page while the web
site’s administrator is trying to delete her profile page tiuker violation of the site’s terms
of use. It is possible for an interleaved execution of thegelbgical operations leave the
KVS inconsistent with the database such that the KVS reftaetexistence of Alice’s profile
page while the database is left with no records pertaininglitee. A subsequent reference
for the key-value pair corresponding to Alice’s profile pageceeds, reflecting Alice’s ex-
istence in the system. This inconsistent state is the resudice conditions that occur in
CADBMS and the inconsistent cache object can remain inddfinitét is never updated
with the latest value.

To illustrate a race condition, assume the user issues @&setjhat invokes a segment
of code (C'S;.se) that references &; — v; pair that is not KVS resident because it was just
deleted by an update issued to the RDBMS (i.e. Alice refergnhir profile page after
updating her profile information). The administrator wharigsng to delete Alice from the
system invokes a different code segmensy,,q) to deletek; —v;. Even though botld'Sy,,,.
andC'S,,.q employ the concept of transactions, their KVS and RDBMS opmratare non-
transactional and may leave the KVS inconsistent. One siceisashown in Figure 4.1.a
whereC' Sy, looks up the KVS and observes a miss, Arrows 1 and 2 of Figureahd

30

www.manaraa.com

Csfuse CSmod Csmod CSfuse Csfuse

2. Consistency 2. Issue queries

1. Get(K) technique to RDBMS 3. Insert
returns cache 1. Update deletes K; to compute K-V,
miss RDBMS from the cache K; -V, in the cache
I I I
%« © = D -
Tmiss TDeIete Time

4.1.a) Acceptable.

Csfuse Csfuse CSmod CSmod CSfuse
2. Issue queries 2. Consistency
1. Get(K) to RDBMS technique 3. Insert
returns cache to compute 1. Update deletes K; K-V,

miss K, -V, RDBMS from the cache inthe cache
I I I

* s s e e
¥ ¥ 4 ¥ Yo
Tmiss TDeIete Time

4.1.b) Undesirable.

Figure 4.1: Two interleaved processingo$,s. andC'S,,,., referencing the same key-value
pair.

31

www.manharaa.com

computesk; — v; by processing its body of code that issues SQL queries (adcaion)

to the RDBMS to computes;, Arrows 3 and 4 of Figure 3.1. Prior t0'S;,. €xecuting
Arrow 5, C'S,,.4 iSsues its transaction to update the RDBMS and delgté®m the KVS.
Next, C'Sy,s. insertsk; — v; in the KVS. This schedule, see Figure 4.1.b, renders the KVS
inconsistent with the RDBMS. A subsequent look ugkpfrom KVS produces a stale value

v; with no corresponding tabular data in the RDBMS.

In sum, a race condition is an interleaved executiofi 6f,,,. andC'S,,,,q with both refer-
encing the same key-value pair. Not all race conditions adesirable; only those that cause
the key-value pairs to become inconsistent with the talddsas. An undesirable race condi-
tion is an interleaved execution of one or more threads éxera's,,,; with one or more
threads executing’'S;,. that satisfy the following criteria. First, the thread(gpeuting
C'Stuse Must construct a key-value pair prior to those threads tketwteC'Sy, ;. that up-
date the RDBMS. And('S,,..q threads must delete their impacted key-value pair from KVS
prior to C'Sy,s threads inserting their computed key-value pairs in the KWi§ure 4.1.b
shows an interleaved processing that satisfies these mgjitesulting in an undesirable
race condition. The race condition of Figure 4.1.a doesemilt in an inconsistent state and
is acceptable.

4.1.1 Gumball Implementation

Gumball Technique (GT) is designed to prevent the race tiongi of Section 4.1 from
causing the key-value pairs to become inconsistent withlégaldata. It is implemented
within the KVS by extending its simple operations (dele&,and put) to manage gumballs,
see Table 4.1. Its details are as follows. When the serveivesca deletéy;) request, and
there is no value fok; in the KVS, GT stores the arrival time of the delefé.(.;.) in a
gumballg; and inserts it in the KVS with key,;. With several deleté{) requests issued
back to back, GT maintains only ogedenoting the time stamp of the latest delgéte(GT
assigns a fixed time to livé) , to eachk; — g; to prevent them from occupying KVS memory
longer than necessary. The valueffs computed dynamically.

When the server processes a @gtfequest and observes a KVS miss, GT provides
the KVS client component (client for short) with the miss ¢irstamp,7;,;ss. The client
maintainsk; and its7,,,;;, time stamp. Onc€'Sy,,. computes a value fak; and performs
a put operation, the client extends this call with;,,. With this put;,v;,T).ss), @ GT

32

www.manaraa.com

deletef;)
1) If k;-v; exists then deleté;-v; and generate gumbayi, i.e., k;-g;, with T}, set to the
current time.
2) If k;-g; exists then changdg,, to the current time.
3) If no entry exists fok; then generateg;, i.e., k;-g;, with T, set to the current time.

get(s:)

1) If k;-v; exists then returm,;.
2) If eitherk;-g; exists or no entry exists fdt; then report a cache miss with current time|as
Tniss time stamp.

pUt(kia Vi, Tmiss)
1) Let T be the server system time.
2) If (T - T,iss) then ignore the put operation.
3) If (¢, exists andl},iss is beforeT,,) then ignore the put operation.
4) If (v; exists and its time stamp is aftér,;,,) then ignore the put operation.
S) If (Thniss < Tuajust) then ignore the put operation.
6) Otherwise, insert;-v; with its time stamp set t@,,,;..

Table 4.1: GT enabled delete, get, and put pseudo-code.inddl stamps are local to the
server containing; — v;.

enabled KVS server comparés,;,; with the current time{). If their difference exceeds
A, Te—Thiss > A, then itignores the put operation. This is because a gumbght have
existed and it is no longer in the KVS as it timed out. Otheeytbere are three possibilities:
Either (1) there exists a gumball férf, k; — g;, (2) the KVS server has no entry fay, or

(3) there is an existing value fat, k; — v;. Consider each case in turn. With the first, the
server comparesg,,;,s with the time stamp of the gumball. If the miss happened lesttoeg;
time stamp.l},.;ss < Lyumbau, then there is a race condition and the put operation is eghor
Otherwise, the put operation succeeds. This mea(i., the gumball) is overwritten with
v;. Moreover, the server maintaifiy,;,, as metadata for this, — v; (this7,,,;, is used in the
third scenario to detect stale put operations, see dismussif the third scenario).

In the second scenario, the server insérts- v; in the KVS and maintaing’,,;.; as
metadata of this key-value pair.

In the third scenario, a KVS server may implement two possgalutions. With the
first, the server compards,;, of the put operation with the metadata of the existipg v;
pair. The former must be greater in order for the put opematitoover-write the existing
value. Otherwise, there might be a race condition and theperation is ignored. A more
expensive alternative is for the KVS to perform a byte-wigmparison of the existing value

33

www.manaraa.com

with the incoming value. If they differ then it may delétge— v; to force the application to
produce a consistent value.

GT ignores the put operation with both acceptable and uratg@sirace conditions. For
example, with the acceptable race condition of Figure 4@Tarejects the put operation of
CSyyse beCaAUsE it9),,;,; Is beforeTy,, ... These reduce the number of requests serviced
using the KVS. Instead, they execute the fusion code tha¢&sSQL queries to the RDBMS.
This is significantly slower than a KVS look up, degradingteys performance. Since the
occurrence of this race condition is typically rare, the @&ipon overall system performance
is negligible.

One limitation of GT is that it may allow the KVS to store stalata if the RDBMS
is configured with snapshot isolatibn[77]. This race condition is elaborated further in
Section 4.2.2. GT does not capture information on the ordesich transactions are issued
to the RDBMS, which prevents it from being able to resolve ram&ldions due to snapshot
isolation. This motivates the need for the IQ framework désd in Section 4.2 which
supports snapshot isolation as well.

4.2 1Q Leases

A challenge of CADBMSs is how to maintain key-value pairs of KMS consistent in the
presence of updates to the RDB. Key-value pairs impacted by &8M8update can either
be invalidated [47, 26, 27], refreshed [26], or incremdptapdated [43], see Chapter 5 for
further details. The focus of this section is on the first techiniques, see Figure 4.2. (Sup-
port for incremental update is a future research direcgea,Chapter 7.) With invalidate, the
application is authored to delete the impacted key-valuespéd subsequent reference for
these keys observes a KVS miss, executes the computaticouidndes the RDBMS to com-
pute a new value, and inserts the resulting key-value paharkKVS. One may implement
this technique by authoring RDBMS triggers on a table. Theseraoked when a row is
inserted/deleted/updated. They compute the impacteddmysielete them from the KVS.
With SQLTrig, these triggers are generated dynamically.

With the refresh technique, the application identifies thpacted keys, reads their values

lwith snapshot isolation, the RDBMS allows read transastitmproceed simultaneously with a write
transaction by maintaining multiple versions of the dathe Tead transactions are serialized to occur before
the write transaction, thus ensuring that transactions@msistent for a given snapshot in time.

34

www.manaraa.com

Application 3. Modify | application
4. Write
2. Delcy \Update // \Update
2. Read
B e S R -
RDBMS
KVS RDBMS KVS -
4.2.a. Invalidate 4.2.b. Refresh

Table 4.2: Two techniques to maintain the key-value paite@KVS consistent with updates
to the tabular data in the RDBMS.

and modifies them to obtain new values, and writes the new&iye pairs back to the KVS,
see Figure 4.2.b. Note that refresh is more complex thadidata because it must go one
step further and compute a new value for each impacted kegcd{at is rare to find this
technique implemented as triggers because the RDBMS is tiypiba slowest component
and complex triggers render it slower.

We define a session as a sequence of at most one RDBMS transaictiomultiple
KVS operations, see Table 4.3 and Section 4.2.1 for a forre@hition of these terms.
When concurrent sessions use invalidate and refresh, thgynoar a variety of undesir-
able race conditions that cause a session to observe stal&ata the KVS. We propose a
novel framework named IQ that serializes all concurrensises regardless of whether they
read/write/read-modify-write RDB data using the RDBMS or ke&jue pairs using KVS.
This is termedstrong consistencgnd it is desirable as it makes systems easier for a program-
mer to reason about [53]. The framework is designed for aorisd CADBMS consisting
of multiple sharded (or replicated) RDBMSs and KVSs. We asstim@é&DBMS instances
and KVS instances implement strong consistency of their magependently. Strong con-
sistency during normal model of operation is a challengopgd and constitutes the focus of
this section.

A key ingredient of strong consistency is thieshnesgproperty of the KVS read oper-
ations. This property requires each KVS read to observe avélee pair that reflects the
most up to date version of the RDB, see Section 4.2.1 for a fodefatition. We implement
the freshness property using two leases, Inhibit (I) andrgnime (Q). The KVS grants an
| lease to a session when its referenced key observes a misen Whession intends to

35

www.manaraa.com

Term Definition
BG Action | An interactive social networking activity such as invite friend, see Taldle|5
Command | An atomic implementation of an operation using either a KVS or

an RDBMS, see last two columns of Table 4.4.

KVS A key value store such as memcached.

Operation | Read (R), Write (W), Delete, Read-Modify-Write (R-M-W) using either
the KVS or the RDBMS, see Table 4.4.

Transaction| A logical sequence of one or more RDBMS operations executed atomically.

RDB A relational database.
RDBMS A relational database management system such as MySQL.
Session A sequence of operations consisting of at most one RDBMS

transaction and one or more KVS operations.

Table 4.3: List of terms and their definitions.

write/delete a key, it must obtain a Q lease on the key fromkiti§. Sections 4.2.2 and
4.2.3 detail how IQ leases handle race conditions, inclyithiose discussed for Gumball in
Section 4.1, in the context of invalidate and refresh. Withpde sessions that implement
social networking actions, we present benchmarking regutfection 4.2.5 that show these
leases reduce the amount of stale data to zero with minimadaton system performance.

4.2.1 Overview

Our proposed I1Q framework targets CADBMS systems realizetuasi off-the-shelf RDBMS
and a key-value store that supports simple operations sugeta set, compare-and-swap,
and delete. No changes to the RDBMS software are necessarplieniant the framework.
Instead, we extend the KVS with new commands that implentent/Q leases. In addi-
tion, we introduce a simple programming model for how thesmmands must be used in
combination with the RDBMS transactions to implement sess{see below for a formal
definition). This model requires a session to acquire arehsd leases in a manner similar
to the two phase locking protocol [56, 39, 71]. The framewsnkon-blocking and deadlock
free. It may delete key-value pairs and abort and re-stagiges to realize strong consis-
tency.

This section provides an abstraction of the different ojp@na supported by the KVS
and the RDBMS. We use these to formally define a session andetbleniess property. Sub-
sequently, we present the | and Q leases used to implemeriitetsieness property with
invalidate and refresh.

36

www.manaraa.com

| Operation| memcached commandSQL command |

Read get SELECT ... FROM ... WHERE ...
Write set INSERT INTO tblname

Delete delete Delete FROM tblname WHERE ...
R-M-W get, set/cas UPDATE tblname SET ... WHERE .|

Table 4.4: Alternative actions and their implementatiothwmemcached and a SQL system.

The focus of this study is on simple read (R), write (W), delate] read-modify-write
(R-M-W) operations that manipulate a small amount of data. &Vthiese operations are
well defined with SQL (see the third column of Table 4.4), tih@iplementation with a KVS
may vary from one system to another. We focus on a variant oficaehed [55, 68] in Sec-
tion 4.2.4 to describe an implementation of the freshnespeaty. The second column of
Table 4.4 shows the different memcached commands that ingpiethe alternative opera-
tions.

One may implement the R-M-W operation of the RDBMS as a trarmadthiat provides
Atomicity, Consistency, Isolation, and Durability (ACID)qperties [40]. With memcached,
one may use compare-and-swap (cas instead of set for W) ina@al atomic implemen-
tation of R-M-W. The idea is to maintain the old valug,{) retrieved by the R operation,
apply the M to compute a new value,(,,), and implement the W operation with cas using
vq @andu,.,. When the cas fails, the application may re-try the operadtarting with the
R.

We define aessioras a sequence of operations consisting of at most one RDBMsS tran
action and several KVS operations. Each RDBMS operation isrséction with ACID
properties. A session starts when it executes its first diparaWith no leases, the end of a
session is when it performs its last operation. When confayuriéh leases, a session ends
once it has released its last acquired lease.

Table 4.5 shows the existence of the different KVS operatwith invalidate and refresh.
Invalidate does not use the R-M-W operation with the KVS asnbgs deletes a key-value
pair that is impacted by a change to the RDBMS. With refreshagi@ication may fetch a
key-value pair from the KVS, modify it in its memory, and verit back to the KVS.

The freshnesgproperty applies to a KVS read operation. It requires evay-\alue
pair in the KVS to reflect the latest state of the relationabdase (RDB) in the RDBMS.
Formally, for each key; in the KVS, each corresponding valug must correspond to a

37

www.manaraa.com

| Operation| Invalidate Refresh

Read v v
Write Ve v
Delete v v
R-M-W X ve

Table 4.5: Presence of KVS operations with invalidate afreésé.

Invite Friend (InviterID, InviteelD) Confirm Friend (InviterID, InviteelD)
1. Begin RDBMS Xact 1. Begin RDBMS Xact
a. Insert (InviterD, InviteelD, 1) into Friendships table @ Update status of (InviterlD, InviteelD) to 2 In Friendship
b. Update PendingCount of invitee by 1 in Users table b. Insert (InviteelD, InviterID, 2) into Friendships table
2. Commit Xact c. Update PendingCount of invitee by -1 in Users table
3. Key1 = “Profile’+InviteelD d. Update FriendCount of inviter and invitee by 1 in Users
4. V,4=KVS Read (Key) Corfmleact
5. View = Increment V4. #PendingFriends Key1 = “Profile”+InviteelD
6. KVS Compare-and-Swap (Key, Vqq, Vhew) Vag = KVS Read (Key1)
V,ew = Decrement V4. #PendingFriends and Increment
Vold #ConfirmedFriends

KVS Compare-and-Swap (Key1, Vg, View)
Key2 = “Profile”+InviterID

Voq = KVS Read (Key2)

View = InCrement V,q. #ConfirmedFriends
0 KVS Compare-and-Swap (Key2, V4, View)

4 .6a. Invite Friend 4 .6b. Confirm Friend

—“0.0".'“4.‘3" apwn

Table 4.6: Pseudo-code of two interactive social netwagykictions implemented as sessions
with no leases.

38

www.manharaa.com

function f that performs its computation using the RDB produced by ttestaession ()
that completed its changes to the RDB:

{V(k’i, ’UZ'), k’l € KVS, V; = f(RDB, Slast)} (41)

Multiple sessions may execute concurrently and overlaphbitrarily complex ways. The
freshness property ensures strong consistency for thdesioperations of Table 4.4 by re-
quiring the CADBMS to serialize concurrent sessions as if wegcuted in isolation one
after another.

To realize the freshness property, we introduce two leage®d Inhibit (I) and Quaran-
tine (Q). The KVS grants these leases on a key. The | leasgusdson a key when the KVS
observes a miss for the key referenced by the KVS read operalihe Q lease is issued
when the application intends to either delete or write aevédu a key. Leases collide when
they reference the same key. Refresh and invalidate hanlliarts in different ways, see
Table 4.7 and discussions of Sections 4.2.2 and 4.2.3.

A lease for a key has a fixed life time and is granted to one KVitheotion (thread)
at a time. The finite life time enables the KVS to release thsdeand continue processing
operations in the presence of node failures hosting thacghign. This is particularly true
with refresh due to how it uses the Q leases: If the KVS holdsd3és indefinitely (similar
to locks) then node failures may degrade system performaecerely. With time outs,
the KVS recovers from node failures that prevent an appiinatrom releasing it lease.
Section 4.2.4 describes how to decide the life time of leases

A contribution of this study is to ensure that the serial sithe of concurrent sessions
performing R-M-W operations (using refresh) is identicathwboth the RDBMS and the
KVS. This is realized using the 1/Q leases and a programnmaigpéwork for their usage.
Section 4.2.4 describes an implementation of a KVS clieat lides the concept of leases
and their back off from the programmer, simplifying theiags. Table 4.8 shows two dif-
ferent re-writes of the pseudo-code of the “Invite Frienmluse the 1/Q leases.

The next two sections detail how invalidate and refresh egngiie I/Q leases to provide
strong consistency.

39

www.manaraa.com

4.2.2 Invalidate

This section describes the race conditions that causadatalto violate the freshness prop-
erty. Subsequently, we present how the Inhibit (I) and Quiama (Q) leases are used to
prevent these race conditions.

Problem Definition

This section starts with an overview of the read lease of {2 how it prevents undesirable
race conditions between (1) sessions that update the RDBM&edete key-value pairs from
the KVS and (2) sessions that observe a KVS miss to computéua aad insert it in the
KVS. Next, this solution is shown to violate the freshnessperty when the RDBMS is
configured with snapshot isolation and the session employs RDBMS triggeinvalidate
key-value pairs. Finally, it is observed that even when #ss®n deletes its impacted keys
after the transaction commits, there may exist a windowraetivhen the KVS does not
satisfy the freshness property and produces stale datdoisd2.2 employs the 1/Q leases
to resolve these limitations.

The read lease of [62] is identical to the | lease presentegkention 4.2.1. The KVS
grants this lease to a session that encounters a miss farameéd key that has no pending
read lease, providing the session with a token. The sessagrgoery the RDBMS, compute
a value for the key and insert the key-value using its tokeme KVS inserts the provided
key-value pair only if the token identifies a valid lease. K\S invalidates a lease for a
key if it receives a delete for the key. It ignores all inserith tokens that reference an
invalid lease. This enables the KVS to prevent potentia i@nditions where a KVS miss
computes and inserts a stale value.

Multiple KVS misses may reference the same key. In this aheeKVS grants a read
lease to one caller and requires others to back off for a peeised duration of time and
repeat their KVS read. This back off time may increase exptaky as a requester collides
with other requesters repeatedly for the same key [62].

The read lease by itself does not prevent a CADBMS system framiuging stale data
when the RDBMS employs snapshot isolation. Snapshot isolgti@arantees (1) all reads
made in a transaction observe a consistent snapshot of the ®ROR2) the transaction

2Numerous industrial strength RDBMSs provide multi-vensioncurrency control [16] which offers snap-
shot isolation to enhance concurrency of transactionsrapdove application performance.

40

www.manaraa.com

1.1 1.2 1.3 1.4 1.5
Xpegn ~ Write Commit V=Read(k) cas(k, V, newV)
newV = Modify(V)

mjssjiuy e B

DD & %

Xpegin Write Commit V=Read(k) cas(k, V, newV)
newV = Modify(V)

k J

Figure 4.2: Snapshot isolation enables Session 2 to conamaténsert a stale value in the
KVS.

1.1 Xpegin ~~ 1.2. Wrrite 1.3. X ommit Inconsistency 1.4.Delete

sk OO CO OO ek

2.1. Read 2.2. Xpegin 2.3.Read 2.4. X nmit 2.5. Write
Miss

Figure 4.3: Deletion of key-value pairs after transactiommit point results in an inconsis-
tency window.

will commit only if none of its updates conflict with any comeent updates made since
that snapshot. With invalidate, snapshot isolation resultwo different undesirable race
conditions that violate the freshness property. We desdhibse in turn.

The first race condition is when the sessions use RDBMS trigigemsvalidate key-
value pairs. These triggers execute as a part of the traosabat updates the RDBMS,
sayTi. After the trigger deletes the impacted key-value pair amok po the commit point
of T3, another session (Session%) may perform a KVS look up for the impacted key.
S, observes a miss and queries the RDB to compute a value usiiRPBestate prior tdl}
committing, see Figure 4.2, inserts this stale key-value pair in the KVS. Aflercommits,
the key-value pair inserted [y is no longer valid. A subsequent read for this key-value pair
violates the freshness property.

One may try to solve the limitation shown in Figure 4.2 by rieiqg the session to delete
the impacted key-value pairs after its RDBMS transactionsrnecidmThis approach may

41

www.manaraa.com

results in an inconsistency window during which the systantates the freshness property.
This is illustrated in Figure 4.3 that shows a Sessio performing a KVS look up for
the same key-value pair as SessionS1)(S, observes a miss and queries the RDBMS
concurrently with the transaction that performs the writéS5a Snapshot isolation enables
the RDBMS read of, (Step 2.3) to compute its result using an old RDB state. Thelovin
of time between Step 2.5 to whefy deletes the key enables a KVS read to violate the
freshness property.

A possible solution is to require the KVS delete to occur asad pf the transaction
commit. However, we are not aware of an RDBMS that enables omegement this
solution.

Solution

We resolve the race conditions described in the problemitdefirby requiring a transaction
to obtain a Q lease on a key that it intends to delete. Aftertittiesaction commits, the
application issues a KVS delete for the key, purging the keraleasing its Q lease. While
there is a Q lease on a key, the KVS ignores all write operationthe key. However, all
reads for the key are satisfied as long as they ob%erk®/S hit. Those reads that observe a
KVS miss must obtain an | lease for their referenced key. Whesrcollides with an existing
Q lease, the read must back off and try again. See Table 4/7cmpatibility of | and Q
leases.

To illustrate the use of | and Q leases, consider the two aesshown in Figure 4.2.
Session 1 is modified in two ways. First, Step 1.3 is replacigll avrequest for a Q lease.
Second, a new step, Step 1.5, is added to delete the impaeyeahkl release the Q lease.
With these changes and the compatibility matrix of Tablead.3tep 2.1 of Session 2 that
observes a KVS miss must obtain an | lease on the quaranteedike KVS notifies it to
back off and try again, pushing this step to succeed onceddeksleletes its referenced key
and releases its Q lease. This prevents Session 2 from cmgaund inserting a stale value.

If Step 2.1 of Session 2 observes a KVS hit then it proceedsnsume the produced
value. This satisfies the freshness property because 8edsias not finished as yet. This
highlights the fact that the freshness property is at thewgeaity of sessions (and not
RDBMS transactions). For example, there is a window of timevbeh when a transac-

3In a serial schedule, the sessions performing the readsappfore the one holding the Q lease.

42

www.manaraa.com

Existing
Lease
I Q
Requesting
Lease
: Not compatible, Back
| KVS miss, Back off off
Q Grant Q and void | Grant Q
4.7.a. Invalidate
Existing
Lease
I Q
Requesting
Lease
. Not compatible, Back
| KVS miss, Back off off
. Reject and Abort
Q Grant Q and void | requester

4.7.b. Refresh

Table 4.7: Compatibility matrices of I/Q leases.

tion commits to the time it deletes its impacted key from théXand releases its Q lease.
During this time, another session may read the value of #ys Khis session is re-ordered
to have occurred prior to the one that updates the RDBMS. Heineeserial schedule is at
the granularity of sessions and satisfies the freshnesgyop

Acquiring Q leases as a part of a transaction and its subserglease after the transac-
tion commits is similar to two phase locking [56, 39, 71] amayides strong consistency.

43

www.manharaa.com

1.1 Xegin 1.2. Write 1.3. Read(k) 1.4. Write(k, v,.,,) 1.5. Xyt

0 OO #& & ==j
wi

2.1. Read(k)

Figure 4.4: CADBMS results in dirty reads with refresh whenrapacted key-value pair is
updated prior to transaction commit.

4.2.3 Refresh

In addition to the race conditions of Section 4.2.2, theesirtechnique suffers from un-
desirable race conditions attributed to its R-M-W operatidrhis section presents these
race conditions and how they violate the freshness prop&tpsequently, Section 4.2.3
describes the use of | and Q leases to prevent these raceicnsadi

Problem definition

An atomic implementation of R-M-W must maintain the valug,{) observed by the R
operation for the referenced key, modify, in its memory to compute a new value,(,,),
and implement W using an atomic KVS compare-and-swap (¥élsen used in combination
with a transaction processing RDBMS, the writingugf,, must happen after the transaction
commits. Otherwise, the CADBMS solution may suffer from dirgads. This is shown
in Figure 4.4 with Session 1 writing 8,.,, in the RDBMS that is consumed by Session
2. Subsequently, the RDBMS aborts the transaction that ¢otestiSession 1 (due to a
deadlock), causing Session 2 to observe a value that shotttéwe existed. This violates the
freshness property as Session 2 did not observe the laéstisat completed successfully.

Another challenge of R-M-W is how to produce the same seriaduale with both the
RDBMS and the KVS. In their simplest form, race conditions l#swtwo concurrent ses-
sions,S; and.S,, update the RDBMS in a manner that realizes one serial ofddpllowed
by S,) and observe a different serial order from the KM§ {ollowed by S;). This may
violate the freshness property because a subsequent Kd3nm&ano longer be a function
of the RDB.

It is possible for two sessions to update two different rowshe RDB and conflict

44

www.manaraa.com

1.1 Xpegn 1.2 Write 1.3. Xcommit 1.4. Read(k) 1.5. Write(k,v1)
| 1 | |

sullics Bl as SR
/B B M & o

2.1. Xpegin 2.2. Write 23 Xeommit 2.4. Read(k) 2.5. Write(k,v2)

.
g

Figure 4.5: Two logical operations race with one anothergdate the RDBMS correctly
only to result in a KVS state that violates the freshness gntyp

by referencing the same key-value pair in the KVS. This isabee the KVS values are
not normalized and may glue data from different rows togethience, two sessions may
simultaneously update two different rows of two differesibies that impact the same key.
Use of cas to implement R-M-W accommodates associative tipesasuch as increment
and decrement of a field. Otherwise, it is possible to vidllagefreshness property.

To illustrate, consider the concurrent executions of ®&ssi and 2,5, andS,, in Fig-
ure 4.5. The cas of Step 2.5 fails when the value written bp $t& is different than the one
S, read in Step 2.4. This caus8sto repeat its R-M-W to update the KVS. This results in
an inconsistency window that enables another session suow® a value that violates the
freshness property.

With Figure 4.5, it is possible to re-arrange the R-M-Wfto occur afters;, i.e., 2.4
and 2.5 to occurs prior to 1.4 and 1.5. In this case, both cas anhd.S, succeeds. However,
their serial order as reflected in the RDBMS is not the same. pituduces the correct
key-value ifS; andS, either manipulate different fields of a value (e.§.,increments the
number of friends whileS; decrements the number of pending friends) or are assceiativ
(e.g., orS; increments the number of friends white decrements it, see Invite Friend and
Confirm Friend implementation of Table 4.6). Otherwise, thetiKVS read that references
the produced key-value pair violates the freshness prpparit does not reflect the latest
RDB state.

Solution

We use the Q lease to prevent the race condition describdtkeiproblem definition by
implementing the cas command as two separate commands:

45

www.manaraa.com

1. Quarantine-and-Compare, QaC(keyy), acquires a Q lease on the referenced key
from the server. In addition, the server must verify that¢herent value of the key
equalsv,y. If both conditions are satisfied then the server grants tHea®e and
returns a token to the requester. Otherwise, the servanmseain abort message. In
this case, the requesting session must release all itssleadeback any RDBMS
transaction that it might have initiated (see below), batkar some time, and re-try
its execution.

2. Swap-and-Release, SaR(key.,), changes the current value of the specified key with
the new valuey,,.,,, and releases the Q lease on the key.

The QaC implements the compatibility matrix of Table 4.7hakiraborts a session request-
ing a Q lease for a key-value pair with an existing Q leases idbecause the serial order of
these two sessions in the RDBMS is not known to the KVS. By algpdimd restarting the
requesting session, the KVS serializes this session aftevrie holding the Q lease.

A session must issue the QaC command for each key that itdsite R-M-W. Should
the KVS respond with abort for a QaC command, the session ralestse all its leases in
order to avoid the possibility of deadlocks. To illustratensider Session 15() acquiring
a Q lease on data item D1 and observing a conflict with Sess{éh)2vhen acquiring a Q
lease on data item D2. K, attempts to acquire a Q lease on D1 then it will conflict with
Sy. It S1 (9-2) retries acquiring a lease on D2 (D1) repeatedly, it will@ntter a conflict
indefinitely, resulting in a deadlock. By requiring each g@sso release all its leases and
try again after a random time out period, the 1Q frameworkobees deadlock free.

One may perform the QacC calls either prior to the start of th®&RB transaction or as
a part of the RDBMS transaction. Once the transaction comth#gssession must issue SaR
for each impacted key with its new value. This updates theeval the KVS and releases
the Q lease on the key.

Consider the two alternative possibilities to issue the Qaf@rmand. When QacC is
issued prior to the start of the transaction and the KVS nstan abort message, then the
session must release all its leases, back off for some tidaetry its execution. When
QacC is issued as a part of the RDBMS transaction and the KVShseaur abort message,
the session must abort the in-progress transaction, bdgckee$tart the transaction, read
the impacted key, modify its value, and issue QaC for the Kégction 4.2.5 provides a
guantitative comparison of these two alternatives. Ssimuly, they provide comparable

46

www.manaraa.com

1.1. Xpegin 1.2. Write 1.5. QaRead(k) ¥eommit 1.7. SaR(k View)

o D & o %
D O =& O

2.1. Xpegin 2.2. Write 2.5. QaRead(k) 2.6. Xollback

v

Figure 4.6: The RDBMS transaction of Session 2 is aborteckdadihck, and retried because
its QaC requests a Q lease that conflicts with the existingaQelef Session 1.

performance because the one that performs more work resdéaer aborts.

The 1Q framework avoids the dirty read of Figure 4.4 by reiqgjiSession 1 to update a
key-value pair (using SaR) after its RDBMS transaction commits

Figure 4.6 shows how the sessions of Figure 4.5 are extendbdhe QaC and SaR
commands. In this figure, the sessions are implementedue teeir QaC as a part of their
RDBMS transaction. In Step 2.5, once Session 2 issues its Q§GheaKVS detects its
conflict with that of Session 1 as they reference the same &eye Session 1 issued its
QacC earlier and was granted the Q lease, the KVS returns ahrabssage to Session 2. In
response, Session 2 aborts its RDBMS transaction (Step 2iGjias again.

Note that our proposed use of Q leases resembles two phdsedas it requires a
session to issue all its QaC calls prior to the RDBMS transaatmmmit and all its SaR
invocations after transaction commit.

4.2.4 An Implementation

This section details an implementation of the server andlieet components of a KVS that
realizes the 1/Q leases of Section 4.2.3. These are an edeamsion of the Twitter mem-
cached versions 2.5.3 [68] and Whalin memcached clientoei2i6.1 [86], respectively.
We conclude with a description of changes to implement thalidate technique. A unique
feature of our implementation is that it supports those iappbns that employ a hybrid of
invalidate and refresh techniques for different keys siemédously.

47

www.manaraa.com

Client

We modified the Whalin memcached client version 2.6.1 [86]ujopsrt the 1/Q leases of
Section 4.2.3 by providing the following four new commanadsudse by the programmer:

e QaC(key,v,4): Provides the QaC interface of the refresh technique pecipation
of Section 4.2.3. This interface issues messages to the I€xX&@isthat implements its
functionality, see the Server description of Section 4.2.4

e SaR(keyuw,..,): Provides the SaR interface of the refresh technique pegifspation
of Section 4.2.3. Similar to QacC, this interface issues ngeEssto the KVS server that
implements its functionality, see the Server descriptib8exction 4.2.4.

e Q(key): sends a message to the KVS server to obtain a Q lea#s maferenced
key. This command is used to implement strong consistenttyimvalidate, see Sec-
tion 4.2.2. (The delete command purges a key and releas@detsse, see the Server
description of Section 4.2.4.)

e GenID(): Returns a unique Transaction ldentifier(TID) tontliy the KVS delete
operations performed by RDBMS triggérhat implement invalidate. This unique
identifier might be generated using either a Java UUID or bglit@ the KVS.

We assume a session instantiates a Whalin connection witk\{Beand uses it during
its life time. This connection is used with both QaC and Sakg¢ations. It maintains the
KVS provided tokenscorresponding to a lease on a key. Once the SaR is issuedefor th
key, the client identifies the token for the key and provide® ithe server to release the
corresponding Q lease. Thus, tokens are transparent tptieation software developer.
Table 4.8 shows two alternative ways that one may implentmentihvite Friend” session of
Table 4.6.a, see Section 4.2.5 for details.

Server

The server is designed to support both invalidate and tefseaultaneously. We imple-
mented this design by extending the Twitter memcachedoms<.5.3 [6] to implement the
following commands:

4Triggers execute as a part of the transaction that involes th
SThis is also true with | leases (where the client implemeaisktoff seamlessly).

48

www.manaraa.com

|

. Q(key, value): Returns a token pertaining to the Q leaseigat by the server on
the specified key. The implementation checks to ensure thadad value matches
the existing value for the key. Otherwise, no lease is grhatel the returned token
instructs the requester to roll back its RDBMS transaction rastart its session per
specifications of Section 4.2.3. This command is used toampht the QaC(key,,,)
command of the client.

2. Quarantine-and-Register, QaReg(TID, keys): Acquires@a@d on each of the speci-
fied keys and maintains a key=TID with its value set to the gigeldist of keys. This
command is used by the invalidate technique (see Sectiof)4Ad implements the
compatibility Table 4.7.a. Should one of the acquired Qédsaasxpire for TID, the
KVS deletes that key.

3. Release(key, token): Employs the key and token to ideatiending lease and re-
moves it. If the token is not valid then the release commairghisred.

4. Set(keyp,., token,v,,): Employs the compare-and-swap feature of the KVS to swap
the value of the referenced key with the new one as long asutrert value of the
key equals,; and the provided token is valid. If the token is not valid thiea lease
has expired and the server (1) deletes the existing keyevair, (2) adjusts the time
to live of the leases based on a 60 second sliding window pbrese times.

5. Get(key): Returns the value for the referenced key witht.a@therwise, the server
acquires an | lease on the referenced key and returns a tokénd key.

6. Delete-and-Release, DaR(TID): Retrieves the valwhere key=TID. For each string
token k inv, DaR deletes the corresponding key=k from the KVS, and seleshe
lease on k. This command is used to implement the invaligatienique, see Sec-
tion 4.2.4.

The server is able to support both invalidate and refreshenudckey-value maintenance
because different commands are used to implement how thesgdds used with each.
The software for each implements the corresponding elewfathie compatibility table of
Table 4.7.

Note that it is acceptable for the KVS to grant a Q lease foryatkeone session)
that uses invalidate while another sessisn folds a Q lease on the same key and employs

49

www.manaraa.com

1.1 1.2 1.3 1.4 1.5 1.6
Xbegin Write QaRead(k) Q lease X commit SaR(k, V,...)
expire

bopk p &
DD & OO ok ek D e e

I Window

2.1 2.2 3.1 3.2 3.3
Kiegin Write QaRead(k) Qlease X ,.mi SaR(k,V,.,) Read(k) Read Write(k, v)
expire miss

Figure 4.7: Expired leases cause refresh to produce stie da

the refresh technique. This is becausewill delete its referenced key (due to its use of
invalidate), preventing a violation of the freshness prope

KVS using Invalidation

As detailed in the Server description of this section, theeseimplements commands for
both invalidate and refresh. To implement the invalidatdhitéque using RDBMS triggers,
we provide a dynamic link library that exposes the Quaraaéind-Register, QaReg(TID,
keys), KVS command. Before executing an RDBMS write operatioa,application first
calls GenlID() to obtain a unique identifier (TID). When a teggomputes the set of keys
impacted by the proposed update to the RDB, it invokes QaReg tisnTID along with
the set of keys. The TID can be passed to the trigger througssian variable (e.g session
context information in the Microsoft SQL Server [61] or a {s&ssion package in Oracle
119 [46]). The server maintains a key=TID whose value costtie list of keys identified
by the trigger. When a session commits a transaction, it ssaueaR(TID) to the KVS to
delete the keys associated with TID from the KVS and reldasie Q leases.

Life Time of a Lease

With refresh, the life time of a lease is important becausmjtacts the strong consistency
guarantee of the 1Q framework. In particular, when a KVS avréferences a Q lease token
that is no longer valid, the current implementation assutinesease has expired and delete
the key-value pair. Even with this in place, an expired leaag produce stale data for some
time. One such a possibility is shown in Figure 4.7. Sessi@fh Lis delayed in a manner

50

www.manaraa.com

that it writes its value after a significant delay from whes @ lease expires in Step 1.4.
During this time, Session 25¢) is able to acquire its Q lease and observe a time out as well.
WhensS, issues its SaR, the KVS deletes its referenced key-valudpeaause its token fails
to identify a valid lease. Now, a third sessidi) references the same key, observes a KVS
miss, and computes a new value that it inserts in the KVS &ft@ommits its transaction.
This provides for an inconsistency window where a KVS reathates the freshness property.

One approach to solve the above is to set the life time of @ leees high value. (Facebook
suggests 10 seconds for its leases [62].) Moreover, the K&dBadjust the life time of leases
by monitoring the delay from when it grants a lease to the tina¢ a KVS write references
the lease. One such a technique is detailed and evaluat6jin The basic idea is to
maintain the maximum observed delay for a moving window wieti say 60 seconds, and
multiply this by some inflation value (say 2) and use it as iteetime of the lease. We refer
the interested reader to [36] for details.

4.2.5 Evaluation

This section employs the BG social networking benchmark {d@2jaluate the implementa-
tion of Section 4.2.4. The description of BG was presentecettiGn 5.7.

Client Designs

As detailed in Section 4.2.3, one may implement clients io alternative ways. Table 4.8
shows these two alternatives for the Invite Friend actidms Fection quantifies their trade-
off.

The first implementation invokes the read, modify and QaCroamds of KVS (in sup-
port of R-M-W) prior to starting the RDBMS transaction. Hencethié QacC fails then no
RDBMS roll-back is required. The session simply backs offtries the read, modification
and QacC until it succeeds. A draw back of this technique i trece QaC succeeds, leases
are held for the duration of time the RDBMS performs its moafyte operation.

The second implementation applies the read, modify and @&Gna after the RDBMS
modify/write operation and prior to the commit point of thrartsaction. This reduces the
duration of Q leases in the KVS. However, it increases theptexity of the software for
two reasons. First, when the QaC command of the KVS fails thelRDBMS transaction
must be aborted. Second, the developer must be aware oftigattion semantics and its

51

www.manaraa.com

Invite Friend (InviterlD, InviteelD) Invite Friend (InviterID, InviteelD)

1. Key = “Profile”+InviteelD 1. Begin RDBMS Xact
2. Vyq = KVS Read (Key) a. Insert (InviterlD, InviteelD, 1) into Friendships table
3. View = Increment Vyq.#PendingFriends b. Update PendingCount of invitee by 1 in Users table
4. QaC (Key, Vyq) c. Key = “Profile”+InviteelD
5. Begin RDBMS Xact d. Vg4 = KVS Read (Key)
a. Insert (InviterID, InviteelD, 1) in PendingFriends e. Ve = Increment V4. #PendingFriends
b. Update PendingCount of invitee by 1 in Users table f. QaC (Key, Vi)
6. Commit Xact 2. Commit Xact
7. SaR (Key, Vi) 3. SaR (Key, Vo)

4.8a. KVS operations prior to RDBMS transaction 4.8b. KVS afiens as a part of transaction

Table 4.8: Two alternative implementations of the InviteeRd session of Figure 4.6.a using
QaC and SaR commands.

QacC calls QacC calls
prior to prior to
transactiorstart | transactiorcommit
0.1% 2 2
1% 672 197
10% 2,542 1,437

Table 4.9: Number of rejected write leases (QaC calls) with ¢lient implementations of
Section 4.2.4.

interaction with the modification proposed for a key-vala@.pn particular, a KVS read that
observes a miss may query the RDBMS to observe the transdatizarages and compute
a value. If the modification to the value is idempotent theplypg it to the retrieved
value is acceptable. However, if the modification is not idetent, e.g., increments the
number of pending friends as shown in Table 4.6.a, then thedness of software might
be compromised by applying the modification to the key twice.

One approach to support the above is for the developer tmaatiditional software to
differentiate between a KVS read that observes a miss or. aAmbther possibility is to
employ multiple RDBMS connections and use a different conoedb handle KVS reads
that observe a miss. This causes the query issued to notveltber updates proposed by
the transaction, avoiding the complexity associated witter@ntiate between a read that
observes a KVS hit or a miss. We implemented this second appro

Table 4.9 shows the number of failed QaC invocations withalkernative client imple-
mentations. Performing KVS actions prior to transacti@artstesults in more failures due

52

www.manaraa.com

10K members 100K members
Twemcache IQ | Twemcache 1Q
0.1% | 36%/2.8% 0%/0% 15%/0.7% 0%/0%
1% 37%/1.1% 0%/0% 15%/0.01% 0%/0%
10% | 10%/0.5% 0%/0% 5%/0% 0%/0%

Table 4.10: Percentage of unpredictable data using réingahdate with Twemcache by
itself and Twemcache extended with the 1/Q leases.

to Q lease collisions for the same key. However, it providegidormance identical to its
alternative because it does not roll-back transactiondfadumber of rejected write leases
is a very small percentage of the total number of performextaimns.

Performance Results

This section compares the performance of two variants ohieaehe:
e Twemcache extended with read leases of [62], labeled Tweimeca

e Twemcache extended with I/Q leases using the implementafi&Gection 4.2.4, la-
beled 1Q.

Table 4.10 shows the amount of stale data produced by thesatevnatives for two different
social graphs consisting of 10K and 100K members. With bothas graphs, the amount
of stale data decreases as a function of the percentage tef aations. This is because,
once stale data is inserted in the KVS, it is removed only kytlar write action. A higher
frequency of write action increases the likelihood of stag-value pairs being restored to
their correct value.

The amount of stale data observed with Twemcache is significwer with invalidate
when compared with refresh. There are two reasons for thist, hvalidate does not use
the R-M-W operation. Second, Twemcache is configured wittl keases of [62].

It is interesting to note that the percentage of stale readisner with the large social
graph when compared with the small social graph. This is Umxdéhe assumed Zipfian
mean (0.27) directs 80% of the actions to 20% of the membdrs.nlimber of members is
ten times higher with the large social graph, reducing tkedihood of read and write actions
competing for the same data items.

53

www.manaraa.com

10K members 100K members
Twemcache IQ | Twemcache IQ
0.1%| 56,792 56,783 57,032 57,019
1% 45,186 44,844 13,898 12,603
10% 39,912 37,518 1,907 1,911

Table 4.11: SoAR using refresh with Twemcache by itself awericache extended with
the I/Q leases.

The SoAR of the invalidation technique is identical for Tweaohe and IQ (not shown)
because both implementation require the RDBMS triggers teeitise same keys. Hence,
both issue the same number of calls to the KVS. The only ieclioverhead with 1Q is the
final call by the session to delete the impacted keys, DaR.fdgs10 impact on the observed
SO0AR because the CPU of the KVS server is less than 50% utilized

Table 4.11 shows the SoAR of the refresh technique with Tvesime by itself and once
extended with the 1/Q leases. With the small social grapdnittwork bandwidth (3 Gbps)
of the Twemcache becomes fully utilized to dictate the ole#ISo0AR. This explains why
the two alternative deployments provide a comparable SGAiRg.

With the large social graph and the 0.1% mix of write actidhs, network bandwidth
of Twemcache remains fully utilized, causing the two vasasf Twemcache to provide a
comparable performance. With the 1% and 10% mix of writeoasti the disk of the server
hosting the RDBMS becomes fully utilized with a sustained gueirequests, dictating the
observed SoAR. This is due to the large size of the 100K socagdigthat no longer fits in
the memory of the RDBMS server. The difference in SOAR of IQ awemcache is lower
than 10% and we attribute this to experimental noise.

54

www.manaraa.com

Chapter 5
Cache Consistency Techniques

When a data object, such as a HTML page, is generated and stdhedcache, it exists as a
separate copy of the data outside of the origin server or RDBMEe data on the RDBMS
were to change, a system will serve incorrect data if it eg&s the old cached copy rather
than the up-to-date version from the database. In ordereiept the cache from becoming
inconsistent with the RDBMS, various cache consistency nmasites are used to ensure
that a RDBMS change occurs on the RDBMS is propagated the caclse Tihechanisms
differ in their implementation, resource requirementsitime performance as well as their
consistency guarantees.

A cache entry is considered stale or inconsistent with the RBBVa read operation
from the cache produces different results than from qugritne RDBMS. When an update
transaction to the RDBMS changes the state of the data, if ttigeceontinues to hold the
obsolete copy of the data as a valid cache entry, any subserpagls of the cached data
will produce stale results. The amount of time elapsed frioenupdate to the moment when
the infrastructure is guaranteed to produce the updatackevaltermed the inconsistency
window [84].

The various consistency mechanisms can be classified itdtoad categories: non-
transparent consistency techniques and transparenstamsy techniques. Non-transparent
consistency techniques require explicitimplementatipa buman application developer or
database administrator with knowledge of specific appbodbgic. The developer may be
required to identify the relationship between the cached dad possible update operations
which change the state of that data. On the other hand, tesrsjpconsistency techniques
maintain the cache consistent without requiring additiamgut from the developer. These

55

www.manaraa.com

techniques require no prior knowledge of the applicationkle@ad and can be used with no
change to application software. The characteristics of esss of techniques are detailed
in the following sections.

5.1 Non-transparent Consistency Techniques

The non-transparent class of consistency techniquessr&detechniques that require the
application developer to manually author software to namthe cache consistent with the
database. An application developer performs global reagdretween the cache entries and
their database counterparts to author custom invalidadivare that accompanies update
operations and functions to maintain the cache consistentie database.

The benefit of these approaches is that the solution is cusiitored for the application.
However, these approaches tend to be time-consuming temgsit and are error-prone.
Software bugs can occur in the consistency maintenance dusgléo programmer error or
as a result of misinterpreting application logic or reqoiests. As the application evolves,
the application developer must maintain the consistengic lap-to-date which opens the
possibility for errors and software bugs once again.

The following sections describe each technique and thguirements.

5.1.1 Application Developer Consistency (ADC)

A human programmer (or database administrator) authorkcappn specific software to
update the cache. Typically, this software is an extensidheocode where the application
updates the database. With the example of the user profike, fiag developer may extend
the application software to update the user’s profile withdppropriate commands to either
update the cache or delete the cached key-data pair. Withtteg a subsequent cache look
up observes a miss and invokes the application logic to cteripe new key-data pair and
inserts it into the cache.

5.1.2 RDBMS Trigger (Trig) Driven

The programmer extends the RDBMS with triggers [11] that detieanges to the underly-
ing tables, compute the impacted key(s) and issue deletenamih(s) to the cache manager
to purge these keys. For example, a key for a user’s profile paght be stored in the cache

56

www.manaraa.com

as the word “Profile” combined with a unique identificatiomrher assigned to the user,
eg. Profile-172 This knowledge of the key naming convention is used whehairtg the
triggers as the triggers have to know how to generate theopppte keys before issuing
the delete to the cache. An update that occurs to the RDBMS auke the trigger to fire
and execute its body. The trigger has access to informabountahe row or rows that were
changed and can extract information such as the value ofusntoin the changed row in
order to compute the key.

For example, a user with 1172 changes their profile which the application translates
into an update on thdserstable. The update causes the trigger ondkerstable to fire and
extract the value of the ID column from changed rdaw2 The trigger then concatenates
this value with the word “Profile” to generate the Kexofile-172and issue the delete for that
key to the cache.

5.1.3 Synthetic

Alternatively, a Time-To-Live(TTL) for cache entries cae bsed to provide weaker consis-
tency guarantees. Some applications do not have stricistensy requirements, where it
is acceptable for users to witness stale data some of the fiilmis technique differs from
the previous two approaches in that updates to the RDBMS dochively trigger invalida-
tions or updates of the corresponding cache entry. Insteaadache entries are oblivious of
changes made to the underlying data and depend on the TTLndd&gendently invalidated.

The TTL dictates the duration a cache entry is valid once stlheen inserted into the
cache. The developer extends the application to providena-Tio-Live(TTL) for each key-
data pair. The cache manager invalidates a key-data paritsn€TL expires. Larger values
of TTL mean that the system holds cache entries longer,asang the cache hit rate but also
increasing the rate of stale reads. Smaller values of TTugethe rate of stale reads but as a
result, reduce the cache hit rate and force the applicaticontinually repopulate the cache
for frequently read entries. The developer has to undeddtiaa nature of the application
and its access patterns in order to estimate an optimum @&lUEL for each key. However,
this solution tends to be inflexible in the face of changingess patterns and unpredictable
workloads.

57

www.manaraa.com

5.2 Transparent Consistency Techniques

Transparent consistency techniques differ from non-parent techniques in that the consis-
tency of the cache is maintained automatically without sdé@aput by the developer. These
techniques rely on two general mechanisms, (i) cues fromafipication to indicate the
data dependencies of cached entries and (ii) notificatmm the RDBMS when a relevant
change is detected. The cues that can be used are readlbbéerathe SQL queries which
are being issued by the application to the RDBMS. By intercgptiese queries through a
RDBMS client wrapper, the system automatically identifieséhgueries without additional
changes required to the application software. The framlekeeps track of these dependen-
cies in order to determine which cache entries are affectezhever a change is detected in
the database.

Two approaches were considered for the implementation i@rsparent caching layer.
First, the Query Change Notification(QCN) approach utilizetnology recently introduced
in commercial RDBMS, described in Section 5.3. Evaluationhef $ystem with QCN re-
vealed limitations in the it's ability to scale. The time &gister a query with the RDBMS
was prohibitively expensive and there was a limit to the nendf queries that could be reg-
istered with the RDBMS (hundreds). With time, optimizatiortttd QCN mechanisms and
improvements to the interfaces may overcome these liritatind make the QCN approach
more viable. However, its present implementation does rakenit suitable for supporting
scalable transparent caching in a CADBMS.

The second approach is to dynamically author triggers teteat the changes to the
data and send notifications to the cache. It mitigates thbl@ms observed by the QCN
approach by registering queries as templates rather tldandoal queries. Queries with the
same structure but different values are considered agedliffenstances of a parameterized
template and in a typical application, there are only dozdrsich query templates. This
approach is described in Section 5.4 and was determinedttebrost suitable approach to
enabling transparent caching.

5.3 Query Change Notification (QCN)

Query Change Notification (QCN) is a mechanism where queriedeaegistered by an
application with the RDBMS. The RDBMS provides a callback irdeef where the appli-

58

www.manaraa.com

cation can receive notifications when the RDBMS detects tleatdbults of the registered
guery has changed. The application can then process tHeatbn to extract information
regarding what has changed and react accordingly. In theexioof a cache, this feature
becomes very useful in maintaining the consistency of tobeavith the RDBMS. Cache
entries which were generated based on queries to the RDBMSecawmdlidated if the sys-
tem detects that the underlying data has changed. In orddw this, the cache has to be
aware of and maintain the dependencies between queriesaahd entries. The process to
determine these dependencies is described in furthed detaéction 5.5.1, as part of the
RDBMS client wrapper.

For example, say the cache contains a key value padk;,, where the keyk;, is “Profile-
172" and the value is the HTML profile page for user with thellZ2 This profile page was
generated by issuing queries to the RDBMS, one of which is:

SELECT occupation
FROM users
WHERE userd = 172;

The cache has registered the query with the database QCNnsgatk mapped the de-
pendency between the query and the Xeypfile-172".
When the following update occurs:

UPDATE users
SET occupation = ‘student’
WHERE userid = 172;

the RDBMS will detect that the result set for the registeredyjieaffected. A notifi-
cation is generated as a part of the update transaction amhido the cache as soon as it
occurs, though possibly with some queuing delay. When thiégadton is received by the
cache, it looks up the mapping between the affected querycacige entries and finds that
“Profile-172” is dependent on the affected query. The cache entry is datali, causing a
subsequent lookup foProfile-172” to observe a cache miss.

Thus, when data is modified in the RDBMS, the change is immdyiedélected in the
cache as a result of the invalidation of dependent caché&sentiThe following read that

59

www.manaraa.com

observes the cache miss winds up reading the latest valuetfirie RDBMS and repopulates
the cache with the up-to-date value of the entry.

QCN was first seen in Oracle under version 10g R2 as Database €hatijication
[63]. It was later enhanced and re-branded as ContinuousyQ@tification (CQN) in
Oracle 119 [64], the latest release. Similarly, Microsao#tfintroduced Change Notification
in SQL Server in the 2005 version [57] and continues to sugpior SQL Server 2012 [58],
the latest release.

5.3.1 Query Registration And Notification

Queries are registered with the RDBMS by the cache server. Y& enterface for this
operation differs between the two RDBMS implementations of QQNthey share the fun-
damental concepts. The RDBMS takes a query string from ancapioin and registers it
for change notification. Multiple queries can be registareslway. When a change occurs,
the RDBMS notifies the application and provides informatioat identifies which of the
registered queries was actually affected. Thus, the samifecatbon handling software can
be used for all the different query registrations.

The rest of this section describes in detail how this is doitk @racle’s CQN system.
Oracle provides a C/C++ client library to communicate with REBMS. Through this
interface, the cache server application first obtains acsigi®n handle and associates with
it a callback function in the application. This callback ¢tion is called when a change
occurs and is used to process the notification. Using thecaphsn handle, the cache
application specifies a query to the RDBMS for registratiorhv@QN. If this operation
is successful, the RDBMS will return a unique identifier for thgistered query, an 8 byte
integer called ®uerylD. If the application attempts to register the same exactyqueitiple
times, the RDBMS will realize that it is a duplicate and retura sameQueryID.

As mentioned earlier, the COSAR-CQN framework keeps track tesiply multiple
gueries used to generate a key-value pair. Each of thesegimve to be registered using
the mechanism described above. Each unique registratioergies a nevQuerylD, which
the framework associates with the key-value pair.

When a change occurs in the RDBMS that affects one of these eagistjueries, a
notification is sent by calling the callback function. Thdification contains one or more

60

www.manaraa.com

SELECT muserid, menail, mprofilel nage SELECT muserid, menuail, mprofilel nage
FROM Menbers m Frds f FROM Menbers m Frds f
WHERE f.frdl D1=1 and muserid=f.frdl D2 VWHERE f.frdl D1=? and muserid=f.frdl D2

5.1.a) Query instance 5.1.b) Query template

Figure 5.1: A query instance to retrieve the friends of Membi¢h userid=1 and its corre-
sponding query template.

QuerylDs! and information about the type of change, the tables thae wéfected, and
the rows that were affected. Using the&3aerylDs the cache application can look up and
invalidate all associated key-value pairs. Thus, at thistghbe cache no longer holds the
stale key-value pair and will force a subsequent lookuptfat key to retrieve the up-to-date
copy from the RDBMS and repopulate the cache.

When a query notification is received, one possible actiofsis to unregister the reg-
istration of the affected query. A reason to do this mightdeeduce the number of reg-
istrations that exist in the RDBMS. CQN registrations impos@aesa@verhead on RDBMS
update, insert and delete transactions because the systemo lcheck these registrations
every time while executing the transaction. However, tlggsteation and unregistration op-
erations themselves are expensive and should be avoidéel thbisystem is under heavy
load. The decision of when to register or unregister a quepedds on the frequency of
access of the cache entry and modification of the data, aswélle system load.

5.4 Dynamically Generated Triggers (SQLTrig)

A disadvantage of the Trig approach described in Sectio2 isthat the application devel-
oper or database administrator has to manually author andairathe trigger code used to
invalidate the cache. This section describes a novel teaegapKVS consistency technique
named SQL Query To Trigger translatid®QLTrigfor short, that overcomes the limitation
of that model.

The input to the SQLTrig’s query to translator is a quarstanceissued by an applica-
tion. The translator consists of the following two compaisen

1. A query template generator, QTGen: The input to this camepbis the query instance
and its output is a query template, and

In some cases, multiple notifications are bundled into ofie ca

61

www.manaraa.com

2. A trigger generator, TrigGen: Its input is a query templahd its output is a set of
triggers.

In the following, we start by describing what is a trigger. xeve describe QTGen and
TrigGen in turn.

A trigger is a procedure registered for execution with the RCEBM is specified on
a table, say R, to execute when a row is either inserted in Rtedkefeom R, or updated.
In essence, TrigGen authors software on the fly per queryl&genplrhe execution of these
triggers uses the inserted/deleted/updated row to contipose query instances whose result
sets have changed and to invalidate (delete) them from tHe. KMrigger defined on a Table
R may not query Table R because this table is in the processing mpdated. TrigGen re-
spects this constraint for all its authored triggers. luasss triggers execute synchronously,
returning an error code when it fails to delete a key-value (oae to intermittent network
connectivity). At run time, such failures cause the RDBMS seantion to abort, leaving the
KVS and the RDBMS consistent with one another.

To compute the query template of a query instance, QTGerep#re SQL query to iden-
tify its selection predicates. These predicates appedreigualification list (where clause)
of the query and might be connected using Boolean logic (andpt). They compare an at-
tribute of a table (e.g. Member.id) with a constant (e.g.46jGising a comparison operator
(= <, >, <, >, #). QTGen replaces the constants with a wild card to comp@etiery
template. Figure 5.1 shows a query instance and its comespg query template produced
by QTGen.

To translate a parsed query templates into triggers, Tng@entifies the following five
types of SQL queries with a “where” clause consisting of:

1. One exact-match selectfopredicate: TrigGen authors triggers that produce the query
instance whose result has changed. See Section 5.4.1 &lsdet

2. Several exact-match selection predicates connectred tig logicaland Identical to
the discussion of queries with one exact-match selectiedipate, see Section 5.4.1
for details.

2An exact match is a comparison of an indexed tuple variablle aconstant using an equality predicate,
e.g., userid="654".

62

www.manaraa.com

3. One or more join predicates and one or more exact-matektsef predicates con-
nected using the logicaind TrigGen authors triggers that generate the query instance
(key) whose result (value) has changed. The authored triggg query one or more
of the tables in the “from” clause of the query. A trigger does query its own table
that is in the process of being modified. See Section 5.4.@dtails.

4. One or more selection and join predicates connected ukegpgicalor: TrigGen
uses Boolean logic to break the original query instance intery|fragments, each
with a distinct where clause resembling one of the previous tases. Conceptually,
the union of the result of the query fragments computes thdtref the original query.
TrigGen requires the KVS to maintain a hash table that mapls @aery fragment to
the original query (key). Next, it authors triggers to gextera query fragment based
on the provided four classifications. When an RDBMS update iesak trigger, it
invokes a KVS method that consumes the query fragment toepttod hash table to
identify the key (query instance with the logiaal) whose value (result set) must be
invalidated.

5. One of the previous four cases with the “select” clausénefdquery using an aggre-
gate such as “count” or “sum”; TrigGen employs the translaprocess of the above
classification with one difference. Triggers are authorgelligently based on the ag-
gregate. For example, a query that counts the number of tooeddnot be invalidated
if one record of its referenced table is updated.

Below, we provide details of how TrigGen supports each claggieries in turn.

5.4.1 Exact match selection predicates

Consider the following query with a qualification list corisig of one exact-match selection
predicate:

SELECT atty, attr, ..., attr,
FROM R
WHERE atty,, ,=C,

3Recall that queries purely with join predicates are not appate for use with SQLTrig because they are
decision support style queries. SQLTrig targets queraimsts that are selective and large in number.

63

www.manaraa.com

Its relational algebra equivalent i8,,, . attr, (Tattr, . =c, (R)). The translation process to

generate triggers is as follows. With either an insertiodaletion of a row-, the trigger is
authored to embody the query template and replace the wittwih the value of atfy,

of the impacted row r, i.e., r.aftr;. The resulting query instance is the key whose value has
changed. The KVS deletes this key.

With an update, TrigGen authors the trigger to execute bafpdate to a row of Table
R. Thus, the trigger may access the attribute value of the radidn@w version of row. If
r.attr, ., is being modified fromC; to C,,.,, then the result of two different query instances
have changed. TrigGen authors an¢lf('= C,,..,)/Else” statement to detect this by compar-
ing the old () with the new value(,..,). When these two values are not equal, additional
code is provided to generate two query instances by regabia wild card of the query
template with two different values: old and new values dtm,a,, i.e.,C; andC,.,. The
KVS deletes both keys.

When r.atty, . ; is not modified, at least one of the attributes in the propectist, i.e.,
r.attr, r.atte, ..., r.atty,, must be modified in order for the trigger to identify an imigac
qguery (key). This is constructed by replacing the wild cafrthe query template with the
value of r.atty, ;.

In its most general form, the query’s qualification list (whelause) may consist of
k predicates connected using the logiaal, attr, ,;=C; AND attr,,, ,=C5 AND ... AND
attr, ., = C. Extension of the insert and delete trigger authoring peds trivial: &
wild cards of the query template are replaced with the rdgeattribute values (atft ,
to attr,, ;) of the impacted row. With an update, every time the value of one or more of the
k attributes (atty, ; to attr,) of a rowr changes then two query instances are identified for
invalidation. They are constructed by replacing the wilcaaf the query template with the
old and new value of thé attributes of the impacted row KVS deletes these keys.

With a query instance converted into its algebraic equial&€rigGen performs simple
string manipulations (change to uppercase and removatiat spaces) and sorts the attribute
names referenced by its project (and select operator) f@riconstructing a query template
and authoring triggers. This ensures the same query thhgltlg different and issued by
different methods of an application produce identical textgs and triggers.

64

www.manaraa.com

5.4.2 Equi-join predicates with one or more exact-match selection pred-
icates

To describe SQLTrig’s authoring of triggers for querieshnat join predicate, consider the
following query:

SELECT R.atty, R.attg, ..., R.atty,
FROM R,S
WHERE Sattr;=C1 and Rattr,,=Sattr;

where tables R and S might be Members and Frds tables and @lvaltle 1 in Figure 5.1.a.
X g attr, 1 =s.atr,). Next, SQLTrig authors two sets of triggers, one for TaBl@nd the
other for TableS. The set of triggers is different for each table due the presef the exact-
match selection predicate referencing Table S. Both contpatquery instance (key) whose
result (value) has changed and should be invalidated. B&evdescribe authoring of trig-
gers for each table in turn. Subsequently, we generalizdiioeission for complex “where”
clauses consisting of an arbitrary number of join and eraateh selection predicates.

SQLTrig authors triggers that handle insert and delete ohwesifrom the table referenced
by a selection predicate (S) as follows. It uses the querplaie and replaces its wild card
with the value of the attribute referenced by the selecti@uigate s....,. With an update
of row s, it authors the trigger to replace the wild card with the ahdl ¢he new value of
s.attr;, identifying two query instances (keys) whose resultsugs) have changed. The
KVS deletes these keys.

With the table that participates in the join clause and isratgrenced by the selection
predicate, Table R, SQLTrig authors triggers that handlertresnd deletion of a row as
follows. It authors code to perform an exact-match look upable S by transforming the
equi-join predicate to an exact-match lookuput&:;= r.attr,,,. Note that ttr,,, is a
constant ag is a specific row of Table R (in the process of being insertedebeted). For
each matching recorg, the authored trigger employs the valuesaftir; to replace as the
value of the wild card in the query template. This query insta(key) should be invalidated
because its result (value) has changed.

Figure 5.2 shows the pseudo-code for how SQLTrig processedhere” clause con-
sisting of an arbitrary number of equi-join and exact-matelection predicates. It groups
predicates based on whether they are equi-join or exaathhsatiection predicates. Next,

65

www.manaraa.com

Let T = Query tenplate of the query instance

Let {P} = Selection predicates

Let {J} = Join predicates

Conbi ne those selection predicates in {P} referencing the same table into one.

o M Db PR

For each table R referenced by a selection predicate p in {P} do

(a) let A=the attribute referenced by p

(b) Author code to | ookup the value of A fromthe row of R that is being
i nserted/ del et ed/ changed and substitute for the wildcard in p

(c) Let {Q} =A{P} - p
(d) For each g in Q

i. Author code to use all elements of {J} to |ookup the value of attribute
referenced by g, q.attr

(e) Author code to use the values conputed in the for loop with {Q} to substitute
for the wildcards in T

(f) Author code to invalidate the resulting query instance
6. {S} = table referenced by the join predicate only
7. For each table s in {S} do
(a) Let {SJ} = All join predicate that reference Table s
(b) Author code to put value for s.attr in all elenents of {SJ}
(c) For each sj in {SJ} do
i. Author code to use other elenents of {J} to | ookup the values of attributes

(d) Author code to use values conputed in Step 7(c)i to substitute for the w | dcards
(e) Author code to invalidate the resulting query instance

Figure 5.2: Pseudo-code for processing join predicates.

66

www.manharaa.com

AND

status="‘2’ OR

userid = ‘869’ friendid = ‘869’

Figure 5.3: Parse tree for a query containing an “or” predica

it merges the exact match predicate that reference the sthigeinto one. Subsequently, it
generates triggers for those tables referenced by the match predicates, Step 5. Finally,
it generates triggers for each table referenced by the ja@dipate, Step 7.

5.4.3 Logical “or” Connectivity

With queries whose “where” clause uses the logaatonnectivity, TrigGen employs the
distributivity property of propositional logic to construct several sub-querigsoider to
do so, TrigGen first parses the query and generates a birgaymMnere the internal nodes
consist of either “and” or “or” nodes and the leaf nodes aeeg#lection or join predicates
(see Figure 5.3 for an example). The algorithm to parse @ @and construct the sub-
gueries is described in Algorithm 1. The “where” clause afteaub-query uses the logical
and connectivity and is different for each sub-query. Logigalhe union of the results of
these sub-queries computes the same result as the origesli g

TrigGen requires the KVS to maintain a hash table that agsexieach sub-query in-
stance (an intermediate key, IntKey) with the original questance (key). This hash table
is identified by a unique name and is specific to this query tatapi.e., it is popuated by
the large number of instances of this query template. Suies#ly, TrigGen employs the
discussions of the previous sections to translate eacty dgpier a set of triggers with one
difference. The trigger generates both a sub-query instéimtKey) and the name of the
hash table for its query template. The KVS uses the hash tebtee along with the sub-
guery instance (IntKey) to identify the query instance jk&fiose result set (value) must be

“4Distribution of conjunction (and) over disjunction (or).

67

www.manaraa.com

Algorithm 1 Expands the parse tree and returns a list of all possible ic@inins of disjunct

predicates.
1: function EXPANDQUERIEY node)
2 if node = Leaf Nodethen
3 return {node.value}
4: end if
5: list < {}
6: if node = “AND” then
7 for left in ExpandQueries(node.Le ftChild) do
8: for right in ExpandQueries(node.RightChild) do
9 list < list.append(left+*“ AND " + right)
10: end for
11: end for
12: else ifnode = “OR” then
13: for left in ExpandQueries(node.Le ftChild) do
14: list < list.append(left)
15: end for
16: for right in ExpandQueries(node.RightChild) do
17: list < list.append(right)
18: end for
19: end if

20: return list
21: end function

68

www.manharaa.com

invalidated.
As an example, consider the following query:

SELECT userid
FROM Friends
WHERE status="2" AND (userid="869’ OR friendid="869’)

Using the distributivity property of propositional logi@rigGen generates the parse tree
shown in Figure 5.3 and constructs the following two subrigpse

1. 7Tusem’d(0-(31‘/atus:’2’) and (userid:SGQ)(FTiendS))s and

2. 7I-userid(O—(status:’Q’) and (friendid=869) (Fmends))

TrigGen directs the KVS to maintain a hash table with a unitarae, say X, that maps these
two query instances (IntKeys) to the original query (keyexN it uses the discussions of
Section 5.4.1 to author triggers for each sub-query. Ontieaded, these triggers identify
a sub-query string along with the mapping table X. The KVSpsomapping table X with
the sub-query string (IntKey) to identify the original quékey) whose result set (value) has
been invalidated. In a final step, the KVS deletes this key.

5.4.4 Simple Aggregates

Aggregates such as count are a common query with social rahgoapplications. An
example query is one that counts the number of friends fovengiser:

SELECT count(f.friendid)
FROM Friends f
WHERE f.userid="869’

TrigGen authors triggers by re-writing their target listeliminate the aggregate. Subse-
quently, it uses the discussions of the previous 3 sectmmaithor triggers. For example,
with the example query, “count(f.friendid)” is replacedthif.friendid”. With “count(*)”,
the “*” is replaced with the primary key of the referencedl&alrigGen does recognize the
presence of an aggregate and, once the triggers are geheesores the target list of the
query (key) generated to its original aggregate. This esstle trigger produces the correct
key for invalidation.

69

www.manaraa.com

With aggregates that have no where clause, e.g., the sun @laés in a column,
TrigGen associates KVS key-value pairs with the name ofafexence table and the columns
of interest. It authors triggers to generate the table namneatenated with the referenced
columns as its output. This invalidates key-value pairéaity change involving those col-
umn values on record inserts, deletes and updates. Theaggirggate with no qualification
listis a special case where the key-value pair is assocvatbdhe table name and is invali-
dated at the granularity of a table change. However, onlgriesand deletes generate query
instances (keys) as updates do not affect the number of rows.

5.5 SQLTrig Implementation

SQLTrig utilizes the standard JDBC interface to provide taeddits of query result look up
using a Key Value Store (KVS) without requiring either an laggtion rewrite or a re-design
of the database. The design presented here is in the cofit@xXtlent-Server architecture,
CS, where the cache manager consists of a client and a sempooent that communicate
via message passing [4, 5, 31] as described in Chapter 3. allypikey-value pairs are
partitioned across the KVS server instances. Hence, a &eyevnvalidation impacts one
server instance. An example KVS system is the widely usedcaehed [55, 62].

This implementation uses a simple single node CS archie¢see Figure 5.4) and con-
sists of the following:

1. Anindustrial strength RDBMS name8QL-X.

2. A SQLTrig serverealized by extending the implementation of the 1Q framdwair
Section 4.2.4 which uses Twitter memcached (Twemcachejofel.5.3 [6]. It reg-
isters the SQLTrig client provided triggers with the RDBMSnggits Trigger Regis-
tration component, see Item 4. It caches a key-value payrwheén its corresponding
triggers have been registered with SQL-X.

3. A SQLTrig clientwith a JDBC interface. It embodies the JDBC driver of SQL-X and
Whalin memcached client version 2.6.1 [86]. This componatetrcepts SQL queries,
identifies those that can be translated into triggers, aokislop their result set in the
SQLTrig server (described below). With SQLTrig server raggghis component issues

°Due to licensing restrictions, the identity of the RDBMS ranbe disclosed and it is named SQL-X.

70

www.manaraa.com

Application Server

Application

sQLTrigClient @

JDBC Whalin
Driver Client

Key(SQL query),
Value, IntKeys,
Triggers

SQL query

Invalidations

<'I'rigger Registration

Trigger
Registration

SQLTrig Server
(Twemcache)

Figure 5.4: The components comprising the SQLTrig architrec

the query to the RDBMS to obtain its result set, generate tregfye the query, pro-
vides the query instance and its result set along with thefgeggers to the SQLTrig
Server.

4. A Trigger Registration(TR) module deployed with the SQLTrig server. It uses the
JDBC driver of SQL-X to register triggers with the SQL-X satvEhe SQLTrig server
uses this module to register triggers provided by the SQ@Lglient. SQLTrig server
communicates with TR using synchronous message passing.

The following sections describe SQLTrig client and sen@nponents in turn.

5.5.1 SQLTrig Client

The SQLTrig client is a wrapper that provides the JDBC intfaf SQL-X for use by the
application. It employs the JDBC driver of SQL-X to issue gegto SQL-X and the Whalin
memcached client version 2.6.1 [86] to issue commands t&QieTrig Server (extended
Twitter Memcached). The client is previewed to all RDBMS geasand update commands

71

www.manaraa.com

issued by the application including those commands thahedfansaction boundaries. To
respect the consistency guarantees implemented by theodeveSQLTrig does not materi-
alize key-value pairs pertaining to queries issued as agbartmulti-statement transaction.
With single-statement queries that fall into one of the gaties described in Section 5.4,
the client looks up the result set (value) of the query (kaeythe SQLTrig server (using its
Whalin client). If the server provides a value, the clientetedizes it into an instance of
result set, and provides it to the application for furthergarssing.

When the server reports a cache miss, the client issues thetgube RDBMS to obtain
its result set. Next, it converts the query instance to aygtenplate using QTGen, see Sec-
tion 5.4. It then proceeds to use TrigGen to author triggersife query templateTrigs}.
Since authoring triggers is a potentially expensive opanathe client avoids repeating this
process for the same query template by maintaining authiagegers locally in a hash table
for future lookup. In order to insert the result set in the €. server, it invokes SQLT-
SETIK(;, v;, {Trigs}, {IntKeys}) wherek; is a unique identifier for this key-value pair (the
SQL query string itself)y; is the serialized result set obtained from SQL{Xrigs} refers
to the set of authored triggers for this query template, fintKeys} are the intermediate
keys that the triggers will generate to match this instaricbeoquery template.

Additionally, the SQLTTrig client implements the 1Q frameskaf Section 4.2 to provide
strong consistency. In response to the Gg), the SQLTrig server returns either the value,
v;, for a hit or grants an | lease fés in the event of a miss. As described in Section 4.2.4,
the token associated with the | lease is maintained seamlegshe SQLTrig client. The
SQLT-SETIK command above passes this token to the server attempting to insert;-v;.
The client wrapper also intercepts DML statem@mdsmplement the IQ framework. Before
executing the DML statement, the client first assigns a Heiien Identifier(TID) that can
be accessed by the trigger bddy

When executing the DML statement, the appropriate triggémisked and passes the
TID along with its generated set of IntKeys to the SQLTrigveerusing Quarantine-and-
Register-IntKey, SQLT-QAREGIK (TID, IntKey). This is a newromand that resembles the
Quarantine-and-Register command of the IQ framework blidies additional handling for
IntKeys. This handling is described in Section 5.5.2. Theesanay fail to grant the Q lease

5Data Manipulation Language statements are SQL statemsatsta insert, delete, or update data in the
RDBMS.

"The mechanism for passing the TID to the trigger varies wiffelent RDBMS implementations. For
example, with Oracle, packages [65] can be used to storewvaisible within the scope of a transaction.

72

www.manaraa.com

if it is unable to allocate memory to store the Q lease, in Wluase the entire transaction
rolls back and the client can either try to execute the tretiga again from the beginning
or abort the transaction altogether. If all Q leases areessfully obtained, the transaction
is committed. The client now issues a Delete-and-ReleasB, (D), to invalidate all
associated key-value pairs and release any acquired leases

The technique used to serialize and deserialize (marshdllamarshall) the result of
SQL queries impacts system performance significantly. ligea marshalling technique
must be fast, efficient and produce the most compact sexthliepresentation. With the
Java programming language, this can be done by marshallssgiaizable version of the
JDBC ResultSet class. Since the general Java SQL Result@ef(aResultSet) class is not
serializable, it has to be converted into an object that dapport serialization.

One such method is to employ the CachedRowSet implemeritglipisun, now Oracle)
to generate a serializable instance of the query Result&ss$.clThis instance is populated
with a ResultSet obtained by executing a query. Next, thisante is serialized into an
array of bytes using the Java writeObject call. The resylarray of bytes is stored as
the value portion of a key-value pair in the KVS. It might berqressed to minimize the
memory footprint and network transmission time. When unfrehsg this array of bytes
after reading it from the SQLTrig server, a correspondingaJeadObiject call is used to
rebuild the original CachedRowSet instance. The Java mérghaind unmarshalling of
objects are expensive because they are designed to hahiitardy complex classes.

To avoid this overhead, we implemented a custom marshatliige ResultSet. It out-
performs the Java marshalling technique because it is avfdhe specific structure of the
ResultSet object. It retrieves its number of columns and ramd stores them as the first
eight bytes of an array. Subsequently, it stores the metaktf@rmation for a column (name,
length, table name, type) and its values for every row, pcodua column store represen-
tation. Today, with variable length columns such as varcitedata is stored as a series
of {length, valué pair. An alternative representation would be to store{l@hgth} values
followed by{value} of the columns. This may produce a more compact representatien
compressing our serialized representation.

We used the YCSB benchmark [29] (Workload C) to compare thergedava mar-
shalling technique with my implementation. YCSB is configlwth one table consist-

8A commercial RDBMS software vendor may provide its own inmpéstation of CachedRowSet as a part
of its JDBC driver, e.g., OracleCachedRowSet. One may uséttead of the generic implementation.

73

www.manaraa.com

SQLTrig Generic
Marshalling Java Marshalling
No With No With
Compression CompressioiCompression Compression
Average Size (bytes) 1,536 972 7,671 3,787
Avg Latency (uS) 102 117 317 875

Table 5.1: Marshalling of YCSB Workload C ResultSet with SQgTand Java.

ing of ten string columns. Each column is 100 bytes long. Erget query retrieves all

columns of a single row. First row of Table 5.1 shows the ayesize of the resulting ob-

ject with both SQLTrig’s marshalling technique and the gengdava marshalling technique.
The SQLTrig marshalling technique results in represematihat are 3 to 4 times smaller
in both compressed and uncompressed format. Moreoverethies timé to both generate

and compres8 the value is faster with my implementation, see the seconwdbfdrable 5.1.

5.5.2 SQLTrig Server

The SQLTrig server is implemented using the C language atehdg the implementation
of the 1Q framework (see Section 4.2.4) using Twitter's maated version 2.5.3, Twem-
cache [6]. The extensions implement the indexing in suppidito new commands: SQLT-
SETIK(;, v, {Trigs}, {IntKeys}) and SQLT-QAREGIK(TID, IntKey). Both are per SQL-
Trig client specification, see Section 5.5.1.

The SQLTrig server maintains a hash table of the triggentshiténge been registered with
the RDBMS successfully. When the client issues the SQLT-SEDidroand, the SQLTrig
server determines if each trigger in the §étigs} is found in the hash table of the registered
triggers. Next, it checks if all intermediate keys in the{datKeys} were already associated
with the provided key:;. If not, it associates eacmit Key; with k; by storing it as a key-
value pair in the KVS, where the key Bt Key; and the value is a list of one or more
associated keys (such &3. If this key-value pair is evicted from the KVS, all its asgied
keys must be invalidated as well The valuey; is only stored if three conditions are satisfied

%In this experiment, the RDBMS, cache server, and the climmhasted on the same PC. While there are
inter-process communications, there are no inter-prece&ssnmunications.

Compression enables a more scalable infrastructure bedafiees shared resources such as the cache
space and the network bandwidth.

1IA key is invalidated if it contains a value or an | lease. Ifantains a Q lease, the key must be kept.

74

www.manaraa.com

at the time of the SQLT-SETIK call (a) all triggers were regied, (b) all intermediate keys
were already associated with prior to this call, and (c) there exists an | lease fpwith a
matching token. If all conditions are mét;v; is inserted into the KVS.

If a trigger in the sef Trigs} is not found in this hash table, SQLTrig places the trigger
in a registration queue and returns without insertiftg; in the KVS, i.e., discard$;-v;.

A background trigger registration thread consumes elesnafithe trigger queue and issues
commands to a Trigger Registration (TR) process to registdr gmger with the RDBMS.
TR maintains a list of triggers it has registered with the RDBMf8 does not register the
same trigger more than once. TR is written using Java andtbhee¥DBC driver of SQL-
X to register triggers. It runs continually as a service aatedts if it loses connection to
the RDBMS (for example, due to the RDBMS restarting). In the ee¢rbnnection loss,
TR will re-connect to the RDBMS and rebuild its list of knownggers by querying the
RDBMS. Once it registers a trigger successfully, it returnsticd to the background thread
of the SQLTrig server. This thread inserts the trigger intiash table of registered triggers
and proceeds to the next trigger in its queue.

Quarantine-and-Register-IntKey, SQLT-QAREGIK(TID, Inf§eresembles the Quarantine-
and-Register command of Section 4.2.4 and includes handfihgtKeys. When a SQLT-
QAREGIK command is received, it looks up all the keys assediatith thel/ntKey;. For
each keyf;, a Q lease is acquired agis associated with the TID. Additionallyyt K ey;
is also associated with the TID. When Delete-and-Release,(IDHR, is called, the server
invalidates and releases its lease on all keys associatedive TID. All keys associated
with IntKeys that are tied to the TID are also invalidatedisT$tep is necessary because the
mapping of IntKey to a key may not have existed when SQLT-QARE®@as called, mean-
ing that no Q lease was acquired for that key. In the eventahather session successfully
stores a key-value pair into the KVS for that key, the key nalsd be invalidated by DaR.
Finally, DaR removes the TID from the KVS.

75

www.manaraa.com

5.6 Evaluation of QCN

This section compares an implementation of Query Changdidadton (QCNY? with Ap-
plication Developer Consistency (ADE) RDBMS Trigger Driven (Trig)* and Synthetit®
along three dimensions: 1) man hours required to desigriemgnt and debug an approach,
2) average processing time, 3) served stale data. We firgt beth a description of the
benchmark used for this evaluation.

5.6.1 RAYS and a Social Networking Benchmark

Recall All You See (RAYS) [35] envisions a social networkingt®m that empowers its
users to store, retrieve, and share data produced by dehiaestream continuous media,
audio and video data. Example devices include the populpteAipPhone and inexpensive
cameras from Panasonic and Linksys. It is deployed on an AmBL?2 instance with an
active community of users. Similar to other social netwogksites, a user registers a profile
with RAYS and proceeds to invite others as friends. A user regyjster streaming devices
with RAYS and invite others to view and record from them. Mo the users profile
consists of a Live Friends” section that displays thosenttsewith a device that is actively
streaming. The user may contact one or more of these friendsw their stream(s).

For the purpose of evaluation the RAYS system is deployed iff&ent configurations.
The first configuration is termed SQL-X, where the systemzatl only the RDBMS to
serve all requests. The second configuration is named QCNgwveheache is utilized in
a CADBMS architecture using the QCN approach described in @eéti3. We use two
popular navigation paths of RAYS to both describe and eval@XEN. They are named
Browsing friends (Browse) and Toggle streaming (Toggle). WIEBrowse is a read-only
workload, Toggle results in updates to the database reguine cache to remain consistent
with the database. We describe each in turn.

Browse emulates four clicks to model a user viewing her prdfiée invitations to view
streams, and her list of friends followed with the profile dfiand. With SQL-X, Browse
issues 38 SQL queries to the RDBMS, see Table 5.2. With QCN, Bregssters 33 distinct
gueries and issues 8 get operations. For each get that ebsecache miss, it performs a put

12See Section 5.3 for a description of QCN.
13See Section 5.1.1 for a description of ADC.
14See Section 5.1.2 for a description of Trig.
15See Section 5.1.3 for a description of Synthetic.

76

www.manaraa.com

Operation Browse Toggle
SQL Queries 38 23
SQL-X SQL Updates 0 3
put 8 7
get 8 7
hits 0 0
QCN | Registered queries 33 23
Cached key-value pairs 8 7
SQL Queries 38 23
SQL Updates 0 3

Table 5.2: Characteristics of two different sequences oépagjts and clicks with RAYS
using an empty cache.

Term | Definition

Number of simultaneous users/threads.
Number of users emulated by a thread.
Think time between user clicks executing a sequence.
Inter-arrival time between users emulated by a thread.
Number of users in the database.
Probability of a user referencing a Toggle sequence.

g E 03 =

Table 5.3: Workload of parameters and their definitions

operation. With an empty cache, the get operations obsereache hits and this sequence
performs 8 put operations.

Toggle corresponds to a sequence of three clicks where avieses her profile, her list
of registered devices and toggles the state of a device. Wtawio result in a total of 23
gueries with SQL-X. QCN issues 7 get operations that obseoaske miss with an empty
cache. QCN executes 23 queries and perform 7 put operatigguptdate the cache. With
the last user click, if the device is streaming then the utgrssthis stream. Otherwise, the
user initiates a stream from the device. This results in 3atgpdommands to the database,
see Table 5.2. With QCN, these updates invalidate cache@®nbrresponding to both the
profilel and devices pages. With a populated cache, the muhbeletes is higher because
each toggle invalidates the Live Friends” section of thommtls with a cached entry.

Our multi-threaded workload generator targets a databébkeaviixed number of users,
w. A thread simulates sequential arrival ofusers performing one sequence at a time.

77

www.manaraa.com

There is a fixed delay, interarrival time, between two users issued by the thread. A thread
selects the identity of a user by employing a random numbeerg¢or conditioned using a
Zipfian distribution with a mean of 0.27V threads modelN simultaneous users accessing
the system. In the single user (1 threads1) experiments, this means 20% of users have
80% likelihood of being selected. Once a user arrives anddeeitity is selected, she picks

a Toggle sequence with probability afand a Browse sequence with probability-{).
There is a fixed think time between the user clicks that constitute a sequence. Table 5.
contains a summary of the parameters used.

We target a small database consisting of 1,000 unique usarsnating cache replace-
ment as an experimental variable. A RDBMS update invalidadéetied key-value pairs,
resulting in a cache hit rate lower than 100%. We measureirthe to perform updates
with and without QCN, quantifying the overhead of registegegries when the RDBMS
processes updates.

The workload generator maintains the structure of the gfittllatabase along with in-
formation about the activities of different users to detmathed data (HTML pages) that
are not consistent with the state of the database, termkeddstta. The workload generator
produces unique simultaneous users accessing RAYS. Thissnagaore uniform distribu-
tion of access to data with a larger number of threads. Whigeighno longer a true Zipfian
distribution, obtained results from different alterna8vare comparable because the same
workload is used with each alternative.

In addition, we present average processing time of a sequé&rocessing time consists
of the service time to process the pages that constitute sgesegq, think time between the
clicks, and queuing delays (if any). To illustrate, with anthtime of 100 msec, zero service
time, and no queuing delay, the minimum processing time fom8e and Toggle sequences
is 300 and 200 milliseconds, respectively. This is becaussv& emulates 4 user clicks
while Toggle emulates 3 user clicks. The first click is thevairof the first page visit by the
user, i.e., incurs no think time.

Due to licensing restrictions, we cannot disclose the itieaf the commercial RDBMS
product used for our reported performance numbers. The RDBMS refers to an anony-
mous commercial product, referred to as SQL-X. This prothastthe following limitation
when multiple threads update the database with tens of éimolssof registered queries. The
response time of an update increases dramatically from arfdigeconds with one thread
to minutes with multiple threads. We anticipate this lirtida to be resolved in subsequent

78

www.manaraa.com

RDBMS releases and avoided it by issuing updates one at a timg asr infrastructure.

5.6.2 Software development effort

Synthetic is trivial to implement and we spent less than amr kmimplement it with RAYS
by employing a global Time-To-Live(TTL) value. QCN is the mexnplest technique and
we spent approximately 5 hours to fine tune SQL queries usdgrtmyse and Toggle se-
guences to register at the granularity of query level natifonn. With ADC and Trig ap-
proaches, there was significant overlap in the design of dlcbe consistency. Moreover,
debugging one helps debugging of the other. We spent appately 90 hours to implement
both approaches. Below, we describe the details of this imgieation.

While the benchmarks we conducted were focused on usersriggbkir devices to
start or stop streaming, in the real RAY'S system, the useléstalperform other operations,
such as modify their profile information or friend relatibi®s with others Such modifica-
tions may cause some cached data to no longer be up-to-ddteequire invalidation to
avoid serving stale data. Capturing all possible interastioecomes a tedious process of
examining each possible modification and how it impacts #ude entries.

With QCN, all of these cases are automatically covered bystegng queries. QCN
development requires a programmer to use the monitoringdadetermine which queries
are either not registered or registered at the granulafitstide notification, and to re-write
these queries. Note that the re-written queries do not itripa@pplication logic. QCN used
them to associate with a cached key-value pair.

In order to fairly compare the different techniques, we faddvelop ADC/Trig invali-
dation schemes that would cover all the potential modificetiby users. Most of the 90 man
hours was spent on identifying these scenarios and impliémggihe appropriate invalidation
schemes in the form of database triggers or cache invalid&igic in the application. Issues
with the transitive nature of friendship and how it was ergplbin our environment further
complicated the implementation. QCN eliminates this anglgsd its associated software.

5.6.3 Processing time and stale data

We analyzed the average processing time of each techniquésapercentage of served
stale data as a function of the number of simultaneous useeskigure 5.5. These results
pertain to a warm cache, one with a cache hit rate close to 10886a reference point,

79

www.manaraa.com

Average Processing Time (Seconds)

10
saL-x —
/"S;nthethic TTL=10s
1 e /
- - QCN
- i —
 —— - Synthethic TTL = 30s
~_ADC/Trig/ Synthethic TTL = 60s _)
0. 1 T T T T 1
0 20 40 60 80 100
Number of Simultaneous Users (N)
5.5.a) Average processing time
Inconsistencies (%)
10
Synthethic TTL = 30s .
1|/ SynthethicTTL=10s
=/’ //l /j/ | -
/S QCN
ADC/ Trig -
0.1 e .
//I
‘/-
_/ ml N &
- e
001 T al T T ; T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Number of Simultaneous Users (N)
5.5.b) Percentage inconsistent data

Figure 5.5: Comparison of alternative approaches100 msec,/=0, w=1,000, u=1%,
n=10,000.

80

www.manharaa.com

N

ADC

Toggle Browse

1
10
20
50

100

0.2
0.2
0.2
0.3
0.4

0.3
0.3
0.3
0.3
0.3

QCN
Toggle Browse
2.1 0.3
4.4 0.3
9.3 0.3
35.2 0.3
98.9 0.3

Table 5.4: Processing time (Seconds) of Browse and Toggleebegs.c=100 msec(=0,

w=1,000,u=1%,n=10,000.

we also present numbers from SQL-X. With this approach, thstmp-to-date data should
be retrieved directly from the RDBMS during every sequence wél@r, there are race
conditions in the workload generator between the point tifexeal and verification. They

results in a small amount of inconsistency with a high nundfesimultaneous users, see

Figure 5.5.b.

Overall, both ADC and Trig approaches provide the best @msiog time and request
rates. Moreover, they produce least amount of staleta8gnthetic is sensitive to the value
of TTL. A high TTL value (60 seconds) enables Synthetic toragpnate the performance
of the ADC and Trig approaches, see Figure 5.5.a. Howevemduces the highest amount
of stale data, see Figure 5.5.b. A lower TTL value minimizesamount of stale data and
increases the processing time. In general, it is challgngimecide a value for TTL.

With the number of simultaneous useh$, as 50 and 100, QCN results in a higher aver-
age processing time when compared with ADC and Trig appesachhis is because its tens
of thousands of registered queries cause the RDBMS to prac&€3k update commands
slower. As shown in Table 5.4, the average processing tima fioggle sequence is sig-
nificantly higher with QCN. Furthermore, the time requiredorform a Toggle sequence
increases dramatically with a higher number of simultasagers. This increase is largely

due to queuing delays as the workload generator was restitictissue one update at a time,
see the last paragraph of Section 5.6.1. On the other hamé@vtrage processing time of
Browse with QCN remains low in all configurations.
With 1 user,N =1, the response time of updates with QCN is slower than SQLk¥
appears to be a limitation in the latest release of the RDBMSvemd@nticipate it to be

18with no consistency technique, the percentage inconsigtainserved is 15%, 26%, 32%, 34%, and 42%
with 1, 10, 20, 50, and 100 simultaneous users, respectively

81

www.manaraa.com

BG Action Read Only VerylLow Low (1%) High (10%
(0.1%) Write Write Write
View Profile 40% 40% 40% 35%
List Friends 5% 5% 5% 5%
View Friends Requests 5% 5% 5% 5%
Invite Friend 0 0.04% 0.4% 4%
Accept Friend Request 0 0.02% 0.2% 2%
Reject Friend Request 0 0.02% 0.2% 2%
Thaw Friendship 0 0.02% 0.2% 2%
View Top-K Resources 40% 40% 40% 35%
View Comments on Resourge 10% 9.9% 9% 10%

Table 5.5: Four mixes of social networking actions with BG.

resolved in future releases. We are almost certain thatdtfenonance of updates with QCN
will improve as query notification feature of commercial RDB$A8atures, rendering QCN
viable for a larger number of simultaneous users and regtgueries (data set sizes).

In sum, QCN expedites software development cycle to enalgi@narations to quickly
develop and deploy features. The limitation of QCN with updah current RDBMSs moti-
vates the need for a different approach to transparentstensly, which is studied in SQL-
Trig.

5.7 Evaluation of SQLTrig

This section employs the BG [12] benchmark to compare theopeence of an industrial
strength relational database management system namedXS@th itself and when ex-
tended with SQLTrig, see Section 5.5. As a comparison yach,stve present performance
of SQL-X with Twemcache and developer provided software &intain the key-value pairs
consistent with the tabular data. Below, we provide an oesvaf the BG benchmark. Sub-
sequently, Section 5.7.2 characterizes the queries (kaysyesult sets (values) generated
by this benchmark. Section 5.7.3 presents the social adiomy (SOAR) of the alternative
configurations using BG. These results demonstrate that B@Q¢mhances the performance
of SQL-X by more than two folds while providing physical datdependence.

82

www.manaraa.com

5.7.1 BG Social Networking Benchmark

BG [12] is a benchmark to quantify the performance of a date sty processing interactive
social networking actions and sessions. These actionsessioss either read or write a
very small amount of the entire data set. In addition to raspdime and throughput, BG
guantifies the amount of unpredictable data produced byasiate. This metric refers to
either stale, inconsistent, or invalid data produced byta si@re. This is particularly useful
because it enabled us to experimentally verify SQLTrig poes no stale data.

BG computes a Social Action Rating (SOAR) of a data store basedhog-specified ser-
vice level agreement (SLA) by manipulating the number oédlais (i.e., emulated members)
that perform actions simultaneously. SOAR is the maximustesy throughput (actions per
second) that satisfies the SLA. All SOAR ratings in Sectioh®are established with the
following SLA: 95% of requests observe a response time ofridliseconds or faster with
no unpredictable (stale) data.

In the reported experiments, BG constructs a database tingstd either 10,000 or
100,000 members with 100 friends per membend 100 resources per member. BG em-
ulates members as socialites using a Zipfian distributiadh exponent 0.27. This means
roughly 20% of the members perform actions of Table 5.5 asbi@s.

Table 5.5 shows the interactiaetionsof BG which are common to many social network-
ing sites [12]. This table shows the four different worklsedkat we explore in this study. A
read-only workload that performs no write actions and tliflerent mix of read and write
actions with the percentage of write actions varying froi?®.to 10%. The workload of
social networking applications is dominated 99%) by read actions [9, 62].

All results reported below were obtained using eight nodiéls tlee following specifica-
tions: Windows Server 2003 R2 Enterprise x64 bit Edition &erPack 1, Inté? Core"
i7-2600 CPU 3.4 GHz, 16 GB RAM, Seagate 7200 RPM 1.5TB disk. The IRfBts exe-
cute on six nodes preventing the benchmarking infrastradtom becoming the bottleneck.
Two different nodes host the RDBMS and the KVS (either Twemeasdrver or SQLTrig
server). These nodes communicate using a 1 Gigabit Etheniteh.

83

www.manaraa.com

Size of key-value pairs in bytes
BG Action Custom Marshalling Java Marshalling
Uncompressed Compressetdncompressed Compressed
View Profile 1,197 703 7,420 3,486
List 100 Friends 82,836 50,740 107,883 55,744
View Friends Requests 338 111 5,778 2,411
(Empty)
View Top-5 Resources 1,865 1,198 8,351 4,110
View Comments on 185 91 5,359 2,365
Resource (Empty)

Table 5.6: Size of key-value pairs produced by different Boas.

Members{serid, username, pw, firstname, lastname, job,
gender, jdate, ldate, address, email, tel, thumbnailImage)

Friends(rdI D1, frdl D2)

PdgFrdsinuviterl D, inviteel D)

Resourcefid, crmid, wamrid, type, body, doc, priority)
Manipulation{nid, modi fierid, r/z?;l7 crato\rid, timestamp, type, content)
Figure 5.6: SQL-X database design with no images. Two reciorthe Friends table repre-

sents the friendship between two members. The underlingduae(s) denote the primary
key of a table. Attributes with a hat denote the indexedlaitas.

84

www.manharaa.com

5.7.2 Size of key-value pairs

Table 5.6 shows the different BG actions and the charaateabtheir produced key-value
pairs. TheView Profileaction of BG consists of a SQL query that retrieves (1) the lgrofi
attributes of a member such as her first name, last name@ictc., (2) her number of
friends, (3) her number of pending friend invitations, ad¥llfer number of resources. Per
the schema of Figure 5.6, the “where” clause of the SQL queaniexact-match selection
predicate referencingseridattribute of the Members table. As shown in Figure 5.6, aggre
gated information for items (2), (3), and (4) are represg@ie attributes. These counts are
kept up-to-date as part of the stored procedures that mtdifgatabase state in response to
actions such as Thaw Friendship and Invite Friend.

The SQL query that implemenltsst Friendsrequires an equi-join between Friends and
Members tables with an exact-match look up using the usétidteomember whose friends
is being listed. The SQL query for View Friend Request is amédnd uses the PdgFrds
table.

View Top-5 Resources implemented using a SQL query that employs a range predica
on the priority attribute of the Resource table. The SQL quleay implementd/iew Com-
ments on Resouraensists of an exact-match selection predicate using thattiibute of
the Resource table.

Table 5.6 shows that the custom marshalling technique dfd®es.5.1 results in a more
compact representation than the generic Java marshadohgigue. This is consistent with
the YCSB results shown in Table 5.1.

Actions that write to the RDBMS (such &svite Friend andThaw Friendshipsee Ta-
ble 5.5) invoke SQLTrig's authored triggers to invalidabe tmpacted key-value pairs. A
subsequent reference for these key-value pairs observagSankss, is redirected to the
RDBMS for processing, and a new key-value pair is insertedenk{dS. The keys invali-
dated by each write action are enumerated in Table 5.7.

5.7.3 Social Action Rating

This section reports on the Social Action Rating (SoAR) of tbikowing three different
configurations:

1. Anindustrial strength RDBMS named SQL-X by itself,

17100 is the median number of friends for a Facebook memberi[&3,

85

www.manaraa.com

(Inviter, Invitee)

BG Write Action Number of Keys| Keys Invalidated
Invalidated
Invite Friend 2 View Profile for Invitee
(Inviter, Invitee) View Friends Requests for Invite
Reject Friend Request 2 View Profile for Invitee
(Inviter, Invitee) View Friends Requests for Invite
Accept Friend Request 5 View Profile for Invitee
(Inviter, Invitee) View Profile for Inviter
View Friends Requests for Invite
List Friends for Invitee
List Friends for Inviter
Thaw Friendship 4 View Profile for Invitee

View Profile for Inviter
List Friends for Invitee
List Friends for Inviter

e

e

e

Table 5.7: Keys invalidated by SQLTrig’s authored triggessen processing a BG write

action.

2. SQL-X configured with SQLTrig per discussions of Sectids and

3. SQL-X configured with Twemcache and maintained condistsimg developer pro-

vided software. This deployment is named application dgpe consistency, ADC,

and is implemented as follows. It represents query ins&aod their results as key-

value pairs. It extends the write actions of BG by identifyimgpacted query instances

(keys) whose results (values) have changed and issuing dadsra delete calls for

these keys.

SQLTrig’s authored triggers compute the same set of keylsasetdeleted by ADC. Hence,
ADC is comparable to SQLTrig with one key difference: the B@Gis issue the delete
calls directly to the KVS and there are no authored/reggstériggers. One may use the

performance observed with ADC as a measuring yard stick amtify the overhead of the
triggers authored by SQLTrig and executed by the RDBMS in tkegaice of updates.

Below, we compare the SoAR of the three alternatives usiniy bamall and a large
social graph consisting of 10,000 and 100,000 membersecésply. With both graphs,
each member has 100 friends and 100 resources. The smdibdates two Gigabytes in

86

www.manaraa.com

10,000 Members 100,000 Members
SQL-X ADC SQLTrig | SQL-X ADC SQLTrig
Read Only | 27,856 62,025 62,103 25,411 63,292 62,449
0.1% Write | 23,144 62,479 62,051 21,584 61,032 62,594
1% Write 16,292 61,333 61,612 13,227 22,418 21,763
10% Write - - - 10,055 14,404 12,004

Workload

Table 5.8: SOAR, actions per second, of SQL-X by itself, esteehwith Twemcache that is

maintained consistent using developer provided softwaamd, using SQLTrig. Results are
shown for two different social graphs consisting of 10,00énmbers and 100,000 members.
Each social graph consists of 100 friends per member andelairces per member.

size and fits in the memory of the server hosting SQL-X conéiduo be 6 Gigabytes in
size. The large graph is 14 Gigabytes in size and does nottheimemory of the RDBMS
server.

Table 5.8 shows the SoAR of the alternative configuratiorih tiie small social graph
(10,000 members). With the alternative workloads of Tab% 8e cache augmented ar-
chitecture enhances the performance of SQL-X more than olds.f SQLTrig and ADC
provide comparable performance with the read-only, 0.1%1® update workloads. This
is because the network bandwidth of the server hosting th8 K3/Gbps) is fully utilized,
dictating the observed SoAR. The CPU cores of the cache sewézss than 50% utilized
in these experiments. This means configuring the cachersertleadditional networking
cards would enable it to support a higher SOAR rating. Theklwsad with a 10% mix of
write actions was not run with the small social graph becaluselata sharded across 6 BG
Clients could not accurately satisfy that ratio of write aod. With a skewed workload
(Zipfian exponent of 0.27) and a high throughput, friendsklptionships between members
in a small shard would be exhausted, leading to a write acata lower than 10%. This
limitation was not observed with the larger social grapf(000 members).

The 100,000 members column of Table 5.8 shows the SOAR ahalige configurations
with the large social graph. With the alternative workloati$able 5.5, the cache augmented
architecture enhances the performance of SQL-X more tharfdlds. SQLTrig and ADC
provide comparable performance with the read-only and Qup#ate workloads. This is
because the network bandwidth of the server hosting the K3/6Hps) is fully utilized,
dictating the observed SoAR.

87

www.manaraa.com

With a higher mix of write actions (1% and 10%), the servertingsSQL-X becomes
disk-bound, forming a read and write queue to the disk. WL Big, execution of some
triggers (e.g. triggers generated from a query containingcui-join predicate) require the
trigger to query the RDBMS to identify impacted queries whasilts are no longer valid.
This causes SQLTrig to provide a lower SOAR than the develpper/ided solution (see last
2 rows of Table 5.8 for 100,000 members) when the RDBMS becoisksdund since the
additional querying further exacerbates the bottlenectherdisk. This overhead translates
to SQLTrig performing slower than ADC by 3% with the 1% updatekload and 16% with
the 10% update workload. ADC invalidates key-value paith@application (each client of
BG), imposing a lower load on SQL-X to outperform SQLTrig.

In sum, a developer provided solution such as ADC outpero8®LTrig when the
server hosting SQL-X becomes disk-bound. This is due toveehead of SQLTrig’s use of
triggers. With a lower ratio of write actions, this overheadegligible (3%) but it becomes
significant with a larger ratio of write actions when the dicomes a much greater bottle-
neck to performance. Other experiments that fully utillze network bandwidth of the KVS
server show that ADC and SQLTrig provide comparable peréoroe. This is because their
percentage difference is less than 2% and we attributedl@ggerimental noise.

88

www.manaraa.com

Chapter 6
Correctness of SQLTrig

SQLTrig supports consistent reads and produces a seriatistghof executed transactions
due to 3 invariants presented in this section. These diffexte between read/write read/write
operations of the RDBMS and the KVS. With the RDBMS, these op@ratpertain to trans-
actions. With the KVS, these operations are at the grarnylafiget, put, and delete key-
value pairs. In the case of query result caching with SQLEIEVS get is equivalent to the
execution of one read transaction. A serial schedule iseagthnularity of transactions.

6.1 Properties

The invariants are realized based on an implementation &f8@that satisfies the follow-
ing properties:

1. RDBMS is configured to ensure ACID properties of transactieitis no dirty reads,
dirty writes, or un-repeatable reads.

2. Prior to populating the KVS with a key-value pair, SQLTrapisters triggers associ-
ated with the key-value pair and establishes the mappingdset ITs and the key.

3. SQLTrig does not cache the result of queries that are aopannulti-statement trans-
action.

4. RDBMS synchronously executes (SQLTrig authored) triggers part of a transaction
that updates the database. During the execution of theetriggaders of the affected
rows are blocked and have to wait for the completion of théenransaction invoking

89

www.manaraa.com

the trigger. Once a trigger invokes the KVS server to delatéTathe KVS server
must delete the corresponding key and return successs ffidits then the trigger fails
and the transaction aborts. In order for a transaction tawivmall its invoked triggers
must execute successfully. This is the invalidation teghaiof Section 4.2. (Refresh
technique produces stale reads.)

. SQLTrig employs the 1Q framework of Section 4.2 to detext eesolve write-write
conflicts that occur due to the coupling of RDBMS and KVS thataetghe correct-
ness of a subsequent read transaction that observes a K\W&Inén the application
observes a KVS miss for a query, it executes a read transaagjainst the RDBMS
and stores its resulting key-value pair in the KVS with a ppémtion. This read
transaction may race with a DML transaction that invokesgagér to delete the same
key-value pair. The trigger delete may occur prior to thedrgansaction inserting
its stale key-value pair in the KVS, causing the KVS to cantdale key-value pairs.
The IQ framework enables the KVS to detect this race conditind ignore the put
operation. This ensures the application will observe eiheey-value pair that is con-
sistent with the tabular data or a KVS miss that redirectsig$ue a transaction to the
RDBMS.

. With RDBMSs configured to use Snapshot Isolation [77], a Iyt dbserves a miss
and races with an RDBMS update may compute a stale value. Theai@ework
prevents the stale value from this get operation from beisgried in the KVS.

Invariants

Invariant 1: All key-value pairs produced by the KVS at tinff¢ are consistent with the

state of the database at tiriig reflecting all committed transactions upfo

Three properties guarantee the correctness of this imtarkarst, Property 2 ensures a

transaction that updates the RDBMS invalidates the correpgrcached key-value pair.

Second, Property 4 ensures a transaction does not comrnhthennvalidation is complete.
If the body of the trigger fails then the RDBMS aborts the tratisa, leaving the state of the
database consistent with the cached key-value pairs. Thisagtees a thread observes its

own updates to the database because, once it issues a ti@msacannot proceed until its
RDBMS update is reflected in the KVS. Thus, for all committedseactions, triggers would

90

www.manaraa.com

have invalidated all impacted key-value pairs. One or mérthese invalidated key-value
pairs may become KVS resident soon after an invalidatiombee a subsequent reference
for them observed a KVS miss, issued transactions to the RDBMSBputes these key-value
pairs, and inserted their most up-to-date version in the KNff&se entries are consistent with
the state of the database and reflect all committed traosacti

Third, Property 5 detects and resolves KVS put-delete (kgte-write) race conditions
that cause the cached key-value pairs to become inconsgtarthe tabular database.

Invariant 2: No key-value pair in the KVS reflects uncommitted transandifboth mid-
flight and aborted transactions).

Property 1 prevents data from a mid-flight DML transactiorbéovisible to other con-
currently executing transactions. This prevents bothydieiads or un-repeatable reads,
guaranteeing computed key-value pairs reflect result ofigeieomputed using a consis-
tent database state.

A mid-flight DML transaction may abort and result in one of twossible scenarios.
First, the transaction aborts before causing the triggdiréo In this case, the contents of
the KVS and the state of data in the RDBMS will be unchanged angdistnt with one
another. Second, the transaction aborts after the trigges dind executes its invalidation
code, purging the cached key-value pair. In this case, tfadidation is unnecessary because
the state of the database is unchanged (aborted trans&ctimlied back). However, while
the unnecessary invalidation may degrade the performdribte system, it will not violate
the consistency of the framework because subsequent tequi#sesult in a KVS miss and
be directed to the RDBMS.

Invariant 3: Read-write conflicts due to concurrent transactions maaijpg the same
data item are serializable.

Consider two transactions that access the same datalter®ne transaction reads;
while the second updatds;. Their concurrent execution results in two possible sdesar
In the first scenario, the reader observes a KVS miss (betheseiter deleted); from the
KVS) and is re-directed to the RDBMS which guarantees the Isscteedule between the
reader and the writer. Property 6 ensures the reader do@sseot a stale value in the KVS
due to the use of MVCC techniques such as Snapshot Isolatidhelsecond scenario, the
reader consumeB; from the KVS and the writer deletes it subsequently. In tlaise; the
reader is ordered to occur prior to the updating transattiganoduce a serial schedule.

In summary, these invariants guarantee that SQLTrig preslacserial schedule of trans-

91

www.manaraa.com

actions. Due to Invariant 1 and Invariant 2, a request issggahst the KVS will produce
the same result as if it were issued against the RDBMS, at amy jpoiime. With Invariant
3, race conditions that occur during read-write conflicesrasolved in a manner that yields
a serial schedule. Along with Property 1, SQLTrig, provittesACID properties.

92

www.manharaa.com

Chapter 7
Future Research

While the initial implementation of SQLTrig has been showret@ble transparent caching
in Cache Augmented Database Management Systems (CADBMS) rdraain many inter-
esting future extensions. These include the design ancemmgahtation of a scalable, highly
available and elastic SQLTrig system using a multi-noddajepent. In addition, one may
extend both the queries supported by SQLTrig and the 1Q fnaorie The following sections
discuss these research questions in turn.

7.1 Scalability of the Cache Layer

The current implementation of SQLTrig functions with a $en&VS node as its cache (a
modified version of memcached [8]). The node is main-memaseld and can be accessed
significantly faster than the RDBMS, but if the load is high egloueven a single main-
memory node can be overwhelmed. The scalability of a systemportant when it comes
to handling an increasing workload. An interesting resealicection is to design and im-
plement a scalable, highly available, and elastic SQLT&igreliminary design is described
below.

A scalable SQLTrig utilizes multiple KVS nodes arranged icluster. Ideally, the load
should be distributed evenly across the nodes such thatrmyade is not overwhelmed.
To realize elasticity, the addition and removal of nodesushaot require a shut-down of the
entire system. Here, we assume the system is deployed im @elater-like topology, where
all KVS nodes can be accessed by any client as well as any itHfemnode.

As shown in Figure 7.1, the cluster features a horizontadlghhpartitioned key-space

93

www.manaraa.com

Figure 7.1: Distribution of the key space across 3 KVS no@ds C2, and C3) in a cluster.
The master node keeps track of all KVS nodes.

with no replication, similar to distributed hash table desisuch as Chord [78] and CAN [69].
While these designs are decentralized, one may simplifyeéseyd using a centralized mas-
ter node. Below we describe one such design.

Each KVS node is responsible for a portion of the hash spabe.h@sh space is parti-
tioned into P fragments. For example, consider the exanies in Figure 7.1 where P =
3. Patrtition 1 contains keys K1 and K2. The KVS node C1 is resiads for this partition.
In practice, with S as the number of nodes, P should be mugkrdnan S to allow for a
better distribution of load across the nodes. This simglifiperations to invalidate all keys
in a partition or disable access to them.

There is a centralized master node (e.g.,a ZooKeeper [@f)ghn charge of node addi-
tions and removals. The master node is aware of all KVS nodeéshee portion of the hash
space that each node is responsible for. When a node is addediacts the master node
for a portion of the hash space and a list of all active noddis thieir partition assignments.
The master node re-assigns partitions across the nodasy thle new node into account.
When re-assigning partitions, 2 different approaches catalen for existing data in any
re-assigned partitions:

94

www.manaraa.com

Server, TR

é_5uccess
Figure 7.2: Insert procedure.

1. Invalidate all keys in the affected partitions. Since K\&S functions as a secondary
store of the data, invalidating all keys in the partition Wbmaintain the consistency
of the data. Clients accessing the KVS will re-populate theudue pairs over time.
However, this course of action comes at the cost of reducedghput when the keys
are initially invalidated.

2. Migrate all keys in affected partitions to their new node improve the cache hit
rate, migrating the key-value pairs to their new destimatigll allow the system to
continue to serve requests for those keys. This might be@mexpensive operation
if the system is incurring a heavy load. Internal key (IntK&y Key mapping either
has to be migrated as well, or the IntKey to Key mapping shailichys be shared
among all KVS nodes.

Each KVS node is aware of other active nodes. When the mastir clvanges the
cluster, it notifies each KVS node of the new partition assignts. If a request arrives at the
wrong node, it is handled differently depending on the typeequest. If a delete request
arrives at the wrong node, it is forwarded to the responsiblie. The response is returned
through the node first accessed. When a list of IntKeys is geatKVS node from the
RDBMS, if that node responds with success, the RDBMS can assuahéf # get/insert
request initially arrives at the wrong node, the requeseedirected to the correct node.
This has the effect of simplifying RDBMS invalidations.

95

www.manharaa.com

ColumnName Type Description

Serverld INTEGER Unique Identifier for KVS server
HostName VARCHAR(256) | KVS server hostname.

Port INTEGER KVS server port.

Active BOOLEAN Current status of the KVS server.

Table 7.1: CacheServers table.

As an example, say a client is trying to insert a key into theteay, see Figure 7.2. The
client first attempts to insert the key, K3.5 which maps tdipan 2, to a KVS node, C1 (if
no nodes are known to the client, it may contact the Masteendll is the wrong node and
will respond with the node address it believes is respoaddyithat key using its partitioning
information about its neighbors. In this example, C1 resgamith “Wrong Server, Try C2”.
The client sends its insert command to C2. If this requesterds; the value is stored in
the KVS. The client library keeps track of C2 being in chargéhat partition so that in the
future, requests for partition 2 can be directed to this rfade If the request failed again,
the client now contacts the Master node for the responsitdie or the intended partition.
The get operation goes through a similar process as welluiiii@ll is enabled but the insert
is against a different server from when the initial Get missusred, the value should not be
inserted. This is because Gumball only works with local setvnestamps.

The RDBMS maintains a table with a list of active KVS nodes. Thisle is named
CacheServers and may contain the columns of Table 7.1. Wheggertis invoked, the
deletes are issued against any of the active nodes. If a raidetd respond, it will be
marked as inactive. The Master node will maintain the tapkaddate by adding/removing
entries that identify different nodes. When a trigger fireé$irst checks the CacheServers
table. If the table is empty, the trigger returns. Otherwisselect the first ACTIVE entry
from the CacheServers table and sends a list of IntKeys toW#&dérver. The list of IntKeys
corresponds to the data modified by that write transactittelresponse of the KVS node
IS a success, the trigger was invoked successfully and dnsdction may proceed with its
execution. Otherwise, if the response was a failure, tiggérn should restart and try again
with either the same CacheServers table entry or a differént.€lhe trigger may re-try up
to N times with N different entries in the CacheServers talfat still fails, the RDBMS
transaction is aborted.

When a KVS node receives a list of IntKeys to invalidate, itaatcasts the list to all
active KVS nodes. Each KVS node then invalidates any entrigs KVS based on its local

96

www.manaraa.com

IntKey to Key mapping. The benefit of this approach is thatheld¥’S node only needs
its local IntKey to Key mapping to determine the affectedkeliowever, the downside is
that every invalidation is broadcast to all nodes alwaysteratively, the IntKey to Key
mapping can be shared among all active nodes. Invalidatembe selectively sent to nodes
that are responsible. This requires that the mapping isesdhamong all the nodes when
it is generated. Furthermore, new nodes added to the sysieentb be aware of existing
mappings as well.

7.2 Data Availability

Middle-tier caches are designed to utilize commodity b#-shelf servers to lower the cost
of deployment. However, these inexpensive servers arecioj failures.

Robust software is required to anticipate and handle thdseda effectively. The avail-
ability of a system is an important aspect of data intensp@ieations and any amount of
down time can cost businesses losses in the order of hundfétieusands of dollars an
hour [66]. This means that the system should continue dperat the presence of failures
by keeping the data alive.

One key insight when dealing with failures in a CADBMS is tha& iKVS server fails,
the data still exists on the backing store, which could be a RBBNat supports ACID
properties. Data is never lost since the RBMDS always conthmsuthoritative copy of
the data and requests can always be re-directed to the RDBME&e &dditional load is
placed on the RDBMS, the system will likely experience dintied performance when
recovering from such failures. Nevertheless, the systelinstili be able to function and
service requests.

In order to address this issue of fault tolerance, threestggh@ommonly occurring fail-
ures need to be handled.

1. Transient and permanent node failure.

A node failure occurs when one of the servers enters an eaterand does not respond
to requests. Aermanent node failures when this error state persists and cannot be
resolved without input or interference from the system amsiviator. The cause of
the error state could be software (e.g. logical error cauaminfinite loop) or in the
hardware (e.g. hard disk or network card failure).

97

www.manaraa.com

A transient node failurexhibits symptoms of a permanent node failure, but only tem-
porarily. When the cause of the transient node failure ceagesation of the server
resumes as normal. For example, a hard disk to lock up temiyadae to malfunc-
tion and cause the node to fail to service requests. Afteresiinme, the malfunction
could cease, causing the node to return to normal operali@nsient node failures
are different from permanent node failures because thesenl still contain cached
objects after it recovers from the transient failure. Beeaafghis, care must be taken
to ensure that invalidations are handled properly and igahfailures do not result in
an inconsistent state of data.

. Connection failure (due to congestion or packet loss).

A client may also fail to communicate with the server when tinelerlying connec-
tion used for communication cannot successfully transmmeasage. This may occur
due to network congestion, where multiple simultaneouseotions compete for the
limited network bandwidth. Packets might be dropped, tesyin a timeout being
observed by a request. When the request times out, it cantbensmitted but under
certain network conditions, the request may not make iteécstirver due to prolonged
congestion.

When a request fails to be transmitted, failure handling réopemed differently de-
pending on the type of request that failed. A failed Get iatied as a Get miss [62].
This results in a slower service time for the applicatioeguest since it couldn’t ac-
cess the cached value and has to query the RDBMS. Furthernfi@rereecomputing
the value, the client will attempt to store it into the KVSeewvthough the value already
exists. However, while the performance of the system isaedpthe correctness of the
system is not affected. This failure scenarios is addreaset) client-level retrans-
missions (separate from TCP retransmissions). When a fadutetected, the client
attempts to re-transmit its request a certain number ofsiomtil the request succeeds
or the number of re-transmissions reaches a threshold. Btarggent methods of
dealing with the failure are possible, but the cost of suchneues would outweigh
their benefit.

Failure of a Delete or invalidation requests however maylt@s stale data if the sys-
tem does not handle them properly, thus impacting the cioress of the system [62].
If a Delete fails to remove a key-value pdiy,and the KVS is allowed to continue serv-

98

www.manaraa.com

ing that entry, subsequent Get requestsifanay result in stale reads. In the SQLTrig
framework, a key-value pair is only re-evaluated when antlaserves a cache miss
for that entry. Thus, if data is modified in the RDBMS but the esponding invalida-
tion message did not make it to the KVS server, the KVS willtoare to serve that
stale value until another modification is made which inwatiées that key-value pair.
The system must either ensure that the invalidation prdpaga the affected KVS
server or reconfigure itself to avoid clients accessing tW& Kserver with stale data.

3. Network partition.

A network partition results in a grouping of nodes such trates in one group may
not communicate with nodes in another group. These sepgratps are termed to
aspartition islandswhere all the nodes within an island may communicate with one
another, but none of the nodes can communicate with or is awane of a separate
island.

Network partitions have to be considered and handled @fffity from connection
or node failures. Within each island, it will appear as thotige missing nodes have
failed and the system will mend itself individually withindse islands. In the presence
of updates, the different islands may start to report adiffeand inconsistent view of
the system and its data. The possibility of network partgiaffects the consistency
and availability guarantees that a system provides. Asdtay the CAP theorem [19],
in the presence of network partitions, a system may not geolkibth consistency and
availability. Thus, a solution to handling network padiits must decide whether to
sacrifice consistency or availability of data.

7.2.1 Proposed Solutions

One possible design utilizes the CacheServers table ofdBe¢til. See Table 7.1 for a
description of the table schema. The table is added to the RDBisliSkeeps track of the
available KVS servers and their status. It is created anataiaied by the Master node and
can be looked up by the triggers to decide where to send ahdatian.

This table offers multiple options for triggers to routeithiavalidation messages to the
cache layer. The system is able to tolerate node failuredltyiag the trigger to re-send
its invalidation to other nodes if an earlier attempt wast $era failed node. Heartbeat

99

www.manaraa.com

messages are used by the Master node to keep track of the std¥S nodes and update
the CacheServers table.

In the event of network connectivity issues between the RDBM®&aKVS node, the
KVS node may continue to serve requests to clients, progidata availability at the expense
of sacrificing consistency. In order to ensure consistetiey,KVS node should instead
stop serving client requests as soon as it detects that ibmget has connectivity to the
RDBMS. Additionally, the data contained in the node has to bggulias it is unaware of
any missed invalidations from the RDBMS. This diminisheseaysperformance during the
time the KVS instance is re-populated with key-value paliisis recovery period might be
unreasonably long given today’s memory capacities, iefs and hundreds of Gigabytes,
motivating the following two alternatives.

Deferred Invalidations Variant

A second possible approach is for the RDBMS to detect netwaicainnectivity with a

KVS instance and store the notifications for this KVS in ag¢abDnce connectivity is re-
established, the KVS contacts the RDBMS and reads the tabled@t its key-value pairs
(while processing in-progress notifications due to on-gdRDBMS updates). It starts to
process request once it completes applying all the noidicabuffered in the RDBMS table.
A key question with this technique is how long should the RDBM&unulate notifications?
Given the inexpensive price of disks, an answer might be g &s the time required to
replay these notifications during recovery time does notedcthe time for the KVS to
reconstruct its entire contents, i.e., the first approach.

Client Proxy Variant

Yet another possibility might be to use other KVS instaneasl(CADBMS client compo-
nents of the participating applications that are a compboofehe physical data independence
solution) to route notifications from the RDBMS to the KVS insgta that cannot commu-
nicate with the RDBMS. This requires the participants to em@alacollaborative routing
protocol similar to those used by peer-to-peer networkgs, EAN [69], Chord [78], etc. It
is interesting to note that such a protocol facilitatestelag of a CADBMS to accommodate
addition (removal) of KVS instances incrementally with rawch time.

100

www.manaraa.com

7.3 1Q Framework Extensions

Chapter 4 demonstrates the feasibility of implementingrgfroonsistency in CADBMSs
using an off-the-shelf RDBMS. It is based on a simple programgnmodel that acquires
IQ leases from the KVS either prior to the start of an RDBMS taatisn or during the
processing of the RDBMS transaction. The current implememtaif 1Q supports both
the invalidate and refresh methods of maintaining the KVBsiency with the RDBMS.
With today’s implementation, a session is limited to at nms¢ RDBMS transaction. A
key question is whether the framework provides strong cb@iscy guarantees for sessions
consisting of multiple RDBMS transactions.

In contrast to the invalidate and refresh methods, an inentah approach [43] can be
used to update key-value pairs in the KVS. With an incremeaqparoach, only a small
portion of the value is changed when data is modified in the RDBASan example, a key-
value pair may contain the result set of a query selectingiphlrows from the RDBMS.
An update to the RDBMS causes the result set for that query td gireadditional row. In
response to the update, the refresh method recomputesttfeearery in order to populate
the cache with the latest value. On the other hand, an iner&nepdate method would
compute the particular row that should be added to the restutind modify the key-value
pair by updating it with the additional row. The latter apgech avoids re-executing the
original query, which may be beneficial in the case of expengqueries that select many
rows. The incremental update method provides anothereisiieg avenue for researching
the feasibility of applying the 1Q framework to provide stgpconsistency.

7.4 Supporting Additional Query Types With SQLTrig

As described in Section 5.4, SQLTrig supports queries @oin exact-match selection
predicates, equi-join predicates, conjunctive (logemad) and disjunctive(logicabr) com-
binations of those predicates as well as select clauseg aggregates. For unsupported
queries, SQLTrig avoids caching the result set and defaultsuting those queries directly
to the RDBMS for execution. Expanding on the types of suppoqigeties would allow
SQLTrig to cache a larger portion of the data in workloadg tis®e those more complex
gueries.

Queries containing range predicates are a candidate fposLfne may support these

101

www.manaraa.com

using R-Trees [44]. TrigGen constructs one R-Tree for eachycgeeplate whose clause
references a range selection predicate. A dimension of tfieeR-corresponds to a refer-
enced attribute. A query instance i% aimensional polygon in the R-Tree (corresponding
to its query template) and whose results are used to compkeg-galue pair. The R-Tree
is maintained by the KVS and TrigGen authors triggers to gereak dimensional value.
These probe the R-Tree to identify matching polygons. Eadigpa identifies queries
(keys) whose result sets (values) have changed. The KV&ddleese keys.

Other types of queries include outer-join queries, nesibedogieries and queries contain-
ing non-equijoin predicates, set operations or compasisdio elaborate, consider nested
sub-queries. These nested sub-queries consist of sedemsnts nested in another SQL
guery. While arbitrarily complex queries can be construatethis manner, SQLTrig might
support such queries by breaking down the nested query @mbding a superset covering
the selected rows. For example, consider the followingyjuer

SELECT atty, (SELECT atty FROM R, WHERE attg=C")
FROM R,
WHERE attp=C}

Since the nested sub-query does not interact with the rélseajuery (uncorrelated sub-
guery), the query can be supported by authoring triggerionested sub-query separately
and also for the parent query while excluding the nestedgsidny. Similar to how queries
containing logicalor predicates are handled (see Section 5.4.3), the query alaovée
supported as though it were 2 separate queries. For cauetatb-queries, simple equi-
joins between attributes selected in nested sub-querrebe#ranslated to separate queries
containing the join attribute and supported similar to hawigoin predicates are currently
handled as described in Section 5.4.2.

7.5 SQLTrig In Other Environments

While SQLTrig is designed to work with the SQL relational mhdee concept of a seamless
caching approach with transparent cache consistencyegpplimany other data models as
well. Experimental results [13] show that query result loplenhances the performance of
a NoSQL [24] data store solution such as MongoDB. Such exdassnay require different

102

www.manaraa.com

mechanisms for detecting updates to the data store, sucloagd®B’s Oplog [60] which
maintains a rolling record of all operations that modifyadet the data store.

Additionally, SQLTrig is currently implemented based oe t@lient Server (CS) archi-
tecture, as described in Section 3.1. The Shared Addrese $BAS) architecture described
in Section 3.2 presents an attractive area of future relsdarextending the SQLTrig im-
plementation. Characteristics of the SAS architecture sisateplication of key-value pairs
across nodes present different challenges in realizingT@@knd maintaining strong con-
sistency. This effort should include an analysis of how titernal keys, IntKeys, should be
partitioned to enable an architecture to scale to a largebeumof nodes. The discussions
of Section 7.1 to extend the implementation of SQLTrig to tiplé SQLTrig servers with

partitioned keys offer relevant mechanisms for workingwdistributed cache nodes in the
SAS architecture.

103

www.manharaa.com

Bibliography

[1] S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. Adtoin: Self-Tuning
Database Systems TechnologifEE Data Eng. Bull.29(3):7-15, 2006.

[2] M. Altinel, C. Bornhovd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and B. Reinwald.
Cache Tables: Paving the Way for an Adaptive Database Cach.DB, 2003.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxpykamic Data Cache
for Web Applications. IHCDE, pages 821-831, 2003.

[4] C. Amza, A. L. Cox, and W. Zwaenepoel. A Comparative Evalwanf Transparent
Scaling Techniques for Dynamic Content ServerddBE, pages 230-241, 2005.

[5] C. Amza, G. Soundararajan, and E. Cecchet. Transparenir@gaeith Strong Con-
sistency in Dynamic Content Web Sites. SapercomputingCS '05, pages 264-273,
New York, NY, USA, 2005. ACM.

[6] C. Aniszczyk. Caching with Twemcache, http://enginegiiwitter.com/2012/07/caching-
with-twemcache.html.

[7] Apache. Apache ZooKeeper,http://zookeeper.apaalpe.o

[8] Six Apart. Memcached Specification, http://code.sadgom/svn/memcached/trunk/server
/doc/protocol.txt.

[9] T. Armstrong, V. Ponnekanti, D. Borthakur, and M. CallaghkinkBench: A Database
Benchmark Based on the Facebook Social Gra&gM SIGMOD June 2013.

[10] L. Backstrom. Anatomy of Facebook, http://www.facek@mmm/note.php?notiel=
10150388519243859, 2011.

104

www.manaraa.com

[11] D. Z. Badal. Correctness of Concurrency Control and Imghbece for Distributed
Databases. ITOMPSAC 1979.

[12] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark tiidganteractive
Social Networking Actions. 2013.

[13] S. Barahmand, S. Ghandeharizadeh, and J. Yap. A Comparisiwo Physical Data
Designs for Interactive Social Networking ActiorSIKM, 2013.

[14] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Charahg User Behavior
in Online Social Networks. linternet Measurement Conferen@909.

[15] P. Bernstein and M. Goodman. Concurrency Control in Dosted Database Systems.
ACM Computing Survey43(2), June 1981.

[16] P. Bernstein and N. Goodman. Multiversion Concurrencyt@bn Theory and Algo-
rithms. ACM Transactions on Database SysteB81465—-483, February 1983.

[17] C. Bornlovd, M. Altinel, S. Krishnamurthy, C. Mohan, H. Pirahesh, @dRein-
wald. DBCache: Middle-tier Database Caching for Highly Sclal@Business Archi-
tectures. ISIGMOD Conferenge2003.

[18] C.Bornhovdd, M. Altinel, C. Mohan, H. Pirahesh, and B. ReiluvAdaptive Database
Caching with DBCachelEEE Data Engineering Bull pages 11-18, 2004.

[19] Eric A. Brewer. Towards Robust Distributed Systems (Ads). InPODC, page 7,
2000.

[20] N. Bruno and S. Chaudhuri. Physical Design Refinement: Therde-Reduce” Ap-
proach. INEDBT, pages 386—404, 2006.

[21] N. Bruno and S. Chaudhuri. Constrained Physical DesignnbuivLDB J, 19(1):21—
44, 2010.

[22] JBoss Cache. JBoss Cache, http://www.jboss.org/jbosecac

[23] K. S. Candan, W. Li, Q. Luo, W. Hsiung, and D. Agrawal. Elvadp Dynamic Content
Caching for Database-Driven Web Sites. SiIGMOD Conferencepages 532-543,
2001.

105

www.manaraa.com

[24] R. Cattell. Scalable SQL and NoSQL Data StorédGMOD Reg. 39:12-27, May
2011.

[25] S. Ceriand S. Owicki. On the Use of Optimistic Methods@mmncurrency Control in
Distributed Databases. Bixth Berkeley Workshop on Distributed Data Management
and Computer Network&ebruary 1982.

[26] J. Challenger, P. Dantzig, and A. lyengar. A Scalableldigthly Available System for
Serving Dynamic Data at Frequently Accessed Web Site&QR/IEEE SC Novem-
ber 1998.

[27] J. Challenger, P. Dantzig, and A. lyengar. A Scalable&ygor Consistently Caching
Dynamic Web Data. IfProceedings of the 18th Annual Joint Conference of the IEEE
Computer and Communications Societie399.

[28] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silbarstei Bohannon, H. Ja-
cobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!'sétbBata Serving
Platform.VLDB, 1(2), August 2008.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, andedrsS Benchmarking
Cloud Serving Systems with YCSB. @loud Computing2010.

[30] Couchbase. Couchbase 2.0 Beta, http://www.couchbasé.co

[31] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, D. Vandesy, K. Ramamritham,
and D. Fishman. A Comparative Study of Alternative MiddlerT@aching Solutions
to Support Dynamic Web Content Acceleration.MbDB, pages 667—670, 2001.

[32] A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, andRamamritham. Proxy-
based Acceleration of Dynamically Generated Content on thdd/Wide Web: An
Approach and ImplementatiotrACM Transactions on Database Systepeges 403—
443, 2004.

[33] L. Degenaro, A. lyengar, I. Lipkind, and I. Rouvellou. Aiddleware System Which
Intelligently Caches Query Results. IRIP/ACM International Conference on Dis-
tributed systems platform2000.

106

www.manaraa.com

[34] C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs, T. Mowry, C. @1, and A. Tomasic.
Scalable Query Result Caching for Web Applications. Augu820

[35] S. Ghandeharizadeh, S. Barahmand, A. Ojha, and J. Yap.allR&it You See,
http://rays.shorturl.com, 2010.

[36] S. Ghandeharizadeh and J. Yap. Gumball: A Race ConditievelAtion Technique for
Cache Augmented SQL Database Management SystemSedond ACM SIGMOD
Workshop on Databases and Social Netwp#sL2.

[37] S. Ghandeharizadeh, J. Yap, and S. Barahmand. COSAR-CQH~pplication Trans-
parent Approach to Cache Consistency.Timenty First International Conference On
Software Engineering and Data Engineerjrigps Angeles, CA, Best Paper Award,
2012.

[38] Shahram Ghandeharizadeh and Jason Yap. Cache Augnizaiziohse Management
Systems. InProceedings of the ACM SIGMOD Workshop on Databases and ISocia
Networks DBSocial '13, pages 31-36, New York, NY, USA, 2013. ACM.

[39] J. Gray. Notes on Database Operating System®parating Systems: An Advanced
Course Sprinter-Verlag, 1979.

[40] J. Gray and A. Reuteffransaction Processing: Concepts and Technigpages 677—
680. Morgan Kaufmann, 1993.

[41] A. Gupta and I. S. Mumick. Maintenance of MaterializegWs: Problems, Tech-
niques, and ApplicationdEEE Data Eng. Bull.18(2):3-18, 1995.

[42] H. Gupta and I. S. Mumick. Selection of Views to Mateidelin a Data Warehouse.
IEEE Trans. Knowl. Data Eng17(1):24—-43, 2005.

[43] P. Gupta, N. Zeldovich, and S. Madden. A Trigger-Basediddware Cache for
ORMs. InMiddleware 2011.

[44] A. Guttman. R-Trees: A Dynamic Index Structure for Spe8earching. '8IGMOD
Conferencepages 47-57, 1984.

[45] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonlgata OLTP Through the
Looking Glass, and What We Found There SIGMOD, pages 981-992, 2008.

107

www.manaraa.com

[46] Oracle Inc. Triggers, Packages, and Stored Procedures
http://docs.oracle.com/html/B160Z2/ch3.htm.

[47] A. lyengar and J. Challenger. Improving Web Server Rertoce by Caching Dy-
namic Data. Inin Proceedings of the USENIX Symposium on Internet Techieslog
and Systemgages 49-60, 1997.

[48] R. Johnson. More Details on Facebook Outage of Thursdagpt. 23,
2010, http://www.facebook.com/notes/facebook-engingémore-details-on-todays-
outage/431441338919, 2010.

[49] H. Kung and J. Robinson. On Optimistic Methods for Conenay Control. ACM
Transactions on Database Systesiune 1981.

[50] A. Labrinidis and N. Roussopoulos. WebView Materialiaa. In Proceedings of the
2000 ACM SIGMOD International Conference on Management oaDieliay 16-18,
2000, Dallas, Texas, USpages 367-378. ACM, 2000.

[51] A. Labrinidis and N. Roussopoulos. Exploring the Traifi@@tween Performance and
Data Freshness in Database-Driven Web Servidis.VLDB Journgl2004.

[52] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transpdvkd-Tier Database
Caching in SQL Server. IICDE, pages 177-189, 2004.

[53] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. AndersB&on’t Settle for Even-
tual: Scalable Causal Consistency for Wide-Area Storage@@RS. InNSOSR 2011.

[54] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo@ Lindsay, and J. F.
Naughton. Middle-Tier Database Caching for e-BusinesSIGMOD, 2002.

[55] memcached. Memcached, http://www.memcached.org/.

[56] D. Menasce and R. Muntz. Locking and Deadlock Detectioistributed Databases.
In Third Berkeley Workshop on Distributed Database Managemet Computer Net-
works 1978.

[57] Microsoft. Using Query Notificationit t p: / / msdn. mi crosoft. com en- us/
l'ibrary/ ms175110(v=sql . 90). aspx.

108

www.manaraa.com

[58] Microsoft. Working with Query Notifications, http:#thnet.microsoft.com/en-
us/library/ms130764(v=sql.110).aspx, 2014.

[59] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Malize View Selection
and Maintenance Using Multi-Query Optimization.Pmoceedings of ACM SIGMQD
May 2001.

[60] MongoDB. Replica Set Oplog, http://docs.mongodb.oayioal/core/replica-set-
oplog/.

[61] Microsoft Developer Network. Using Session Contexbhnfiation, SQL Server 2008
R2, http://msdn.microsoft.com/en-us/library/ms189aS@x.

[62] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, 8. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and Vk&smramani. Scaling
Memcache at Facebook. Rresented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementapages 385-398, Berkeley, CA, 2013.
USENIX.

[63] Oracle. Database Change Notification.htt p:// docs. oracl e. com cd/
E14072_01/java. 112/ e10589/ dbchgnf. ht m

[64] Oracle. Using Continuous Query Notificatiomt t p: / / docs. or acl e. com cd/
B28359_01/ appdev. 111/ b28424/ adf ns_cqgn. ht m

[65] Oracle. PL/SQL Packages, http://docs.oracle.cofa@tb3001/ ap-
pdev.920/a96624/Qpacks.htm, 1996.

[66] D. A. Patterson. A Simple Way to Estimate the Cost of Domaet InLISA volume 2,
pages 185-188, 2002.

[67] D. R. K. Ports, A. T. Clements, |. Zhang, S. Madden, and Bkavs Transactional
Consistency and Automatic Management in an Application Mzdahe. InOSDL
USENIX, October 2010.

[68] M. Rajashekhar and Y. Yue. Twitter memcached (Twemchaeherersion 2.5.3,
https://github.com/twitter/twemcache/releases/tag/\3.

109

www.manaraa.com

[69] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. &elneA Scalable Content-
Addressable Network. IRroceedings of the ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Comuations pages 161-172,
August 2001.

[70] D. Reed. Naming and Synchronization in a Decentralizeth@der System, Ph.D.
thesis, Department of Electrical Engineering and Computesrtee, MIT, 1978.

[71] D. Rosenkrantz, R. Stearns, and P. Lewis. System Level @wrcy Control for
Distributed Database System®SCM Transactions on Database SysteB)slune 1978.

[72] K.Ross, D. Srivastava, and S. Sudarshan. Materialized Wlaintenance and Integrity
Constraint Checking: Trading Space for Time PFroceedings of ACM SIGMQMay
1996.

[73] N. Roussopoulos. View Indexing in Relational Databa#€3M Trans. Database Syst.
7(2):258-290, 1982.

[74] N. Roussopoulos. Materialized Views and Data Wareheus8IGMOD Record
27(1):21-26, 1998.

[75] P. Roy, K. Ramamritham, S. Seshadri, P. Shenoy, and Srs&hata Don't Trash your
Intermediate Results, Cache 'e@oRR c¢s.DB/0003005, 2000.

[76] P.Saab. Scaling memcached at Facebook, http://wwebfaok.com/note.php?noid=
39391378919, Dec. 2008.

[77] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transantb Storage for Geo-
Replicated Systems. IBROSR2011.

[78] 1. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Baisknan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. AGM SIGCOMM pages
149-160, San Diego, California, August 2001.

[79] M. Stonebraker and R. Cattell. 10 Rules for Scalable Perdoice in Simple Operation
DatastoresCommunications of the ACNB4, June 2011.

[80] The TimesTen Team. Mid-Tier Caching: The TimesTen Apito InProceedings of
the SIGMOD 2002.

110

www.manaraa.com

[81] Terracotta. Ehcache, http://ehcache.org/docunienfaverview.html.

[82] R. Thomas. A Majority Consensus Approach to Concurrencyti©bfor Multiple
Copy DatabasesACM Transactions on Database Systefmslune 1979.

[83] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The Anay of the Facebook
Social GraphCoRR abs/1111.4503, 2011.

[84] W. Vogels. Eventually ConsisterACM Queue6(6):14-19, 2008.

[85] W. Vogels. Eventually Consisten€Eommunications of the ACM, Vol. 52, Ng.jpages
40-45, January 2009.

[86] G. Whalin, X. Wang, and M. Li. Whalin memcached Client Versi2.6.1,
http://github.com/gwhalin/Memcached-Java-Clientasks/tag/releas6.1.

[87] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. ldag Strategies for Data-
Intensive Web Sites. INLDB, pages 188-199, 2000.

111

www.manharaa.com

